
Interactive Computer Graphics
Stanford CS248, Winter 2020

Course Summary +
Graphics at Stanford Today

Lecture 20:

Stanford CS248, Winter 2020

Stanford CS248, Winter 2020

Stanford CS248, Winter 2020

As accomplished CS248 students you’ve now learned the
basics of drawing shapes, representing surfaces/light/

materials/motion, and manipulating images, etc…

 (and have been introduced to core graphics ideas like
sampling, anti-aliasing, acceleration data structures, etc.)

What’s Next?

Stanford CS248, Winter 2020

More graphics classes at Stanford
SPRING

CS348B: “Image Synthesis Techniques”, theory and practice of realistic, physically-based rendering
(Hanrahan, T/Th 1:30-2:50)
CS348K: “Visual Computing Systems”, principles of creating efficient parallel systems for computational
photography, 3D graphics, and deep learning for vision (Fatahalian, T/Th 3-4:20)
CS348E: Character Animation: Modeling, Simulation, and Control of Human Motion (Liu, M/W 1:30-2:50)

CS448V: “Computational Video Manipulation,” recent research results related to manipulating video
(Agrawala, M/W 3-4:20)
EE267: “Virtual Reality”, focuses on display and tracking hardware for VR (Wetzstein, M/W 3-4:20)

WINTER
CS348C: “Animation and Simulation”, deep dive into animation and simulation techniques (James)
EE367/CS448i: “Computational Imaging and Display”, advanced course on display design (Wetzstein)
CS205L: “Continuous Mathematical Methods with an Emphasis on Machine Learning” (Fedkiw)

OTHER
CS146: “Computer Game Design”, make your own games in Unity (James)

Stanford CS248, Winter 2020

CS348B (Spring, Hanrahan)
▪ Rendering realistic images by modeling the physical process of light interacting with materials
▪ With ray tracing as the mechanism to simulate these phenomenon

Stanford CS248, Winter 2020

Graphics Research at Stanford Today

Stanford CS248, Winter 2020

Ron Fedkiw
▪ Simulation techniques (often) targeted at film production
▪ Now exploring use of machine learning to augment or improve physical simulations

Stanford CS248, Winter 2020

Ron Fedkiw

Stanford CS248, Winter 2020

Ron Fedkiw

Stanford CS248, Winter 2020

Maneesh Agrawala
▪ Many current projects on video editing and manipulation

Visual Rhythm and Beat [Davis et al.]

Stanford CS248, Winter 2020

Maneesh Agrawala
▪ Many current projects on video editing and manipulation

Visual Rhythm and Beat [Davis et al.]

Stanford CS248, Winter 2020

Doug James
▪ Physically based simulation

Stanford CS248, Winter 2020

Doug James
▪ Physically based simulation

Stanford CS248, Winter 2020

Doug James
▪ Physically based simulation

Stanford CS248, Winter 2020

Leo Guibas
▪ Geometry processing and analysis

PointNet: Deep Learning on Point Clouds

Shape Similarity and Correspondence

Stanford CS248, Winter 2020

Karen Liu

Stanford CS248, Winter 2020

Gordon Wetzstein
▪ Computational imaging and computational displays

Seeing around corners
“Confocal non-line-of-sight imaging based on the light cone transform”

Stanford CS248, Winter 2020

Gordon Wetzstein
▪ Computational imaging and computational displays

“Hybrid Optical-Electronic Convolutional
Neural Networks”

Using carefully designed optics to compute the
early layers of a CNN prior to digital processing

Stanford CS248, Winter 2020

Karen Liu
Interests in animation, simulation, and control

Stanford CS248, Winter 2020

Kayvon Fatahalian (me)

Platforms for scaling modern
video processing applications
to hundreds of GPUs or
thousands of CPUs

Stanford CS248, Winter 2020

 Kayvon Fatahalian (me)

A completely computer generated Wimbledon point.

Can we design a ray tracer that can boot up
10,000 cores in the cloud in a few seconds and
render a massive film-quality scene?

Can we redesign a game engine
to more efficiently support RL-
based training?

AI Habitat

And distribute simulation
processing across many machines
in the cloud?

Detecting domain-specific video events

Cable TV news: political interviews, commercial segments

Vehicular video: open parking spots, vehicle maneuvers of interest

Feature film analysis: action shots, conversations, close-ups

Challenge:
Training detectors for new events can be expensive:

Collecting training data is labor-intensive, and training
accurate models requires compute, time, and skill

Cable TV news interview detector?

Approach:
Specify novel events in video as queries that
programmatically compose the outputs

of existing, pre-trained models.

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Unlabeled Video Collection

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Annotations produced by
pre-existing models

Unlabeled Video Collection

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Video Collection

Basic
Annotations

Analyst

Face Detections

Captions

3:15-3:16: BERNIE...
5:18-5:20: THANK YOU...
9:15-9:17: TODAY IN...

Interviews

Commercials

def bernie_and_jake(faces):
 bernie = faces
 .filter(face.name == “Bernie”)
 jake = faces
 .filter(face.name == “Jake”)

 bernie_and_jake = bernie
 .join(jake,
 predicate = time_overlaps,
 merge_op = span)

 return bernie_and_jake

Rekall
Queries

Evaluate Query Results
Satisfactory?

Iterate on Query

no
yes

Downstream
Applications

Analysis

Data Curation

Stanford CS248, Winter 2020

Analyzing video to curate content

[Source: Harry Potter films]

All interviews on TV news

Stanford CS248, Winter 2020

Other popular research topics in
computer graphics…

Stanford CS248, Winter 2020

Creating physically plausible models
▪ Via 3D printing, fabrication
▪ Creatures that locomotes, furniture that stands, etc.

Fabricate models that are balanced to stand

Fabricate robots that can balance and move

Stanford CS248, Winter 2020

Computational photography
▪ Using computation (and increasingly machine learning) to make more aesthetic

photographs, simulate behavior of more complex lenses, etc.

Google Pixel 2 Portrait mode
Image credit: Google / Matt Jones (https://ai.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html)

Stanford CS248, Winter 2020

Computational photography
▪ Using computation (and increasingly machine learning) to make more aesthetic

photographs, simulate behavior of more complex lenses, etc.

High Dynamic Range Imaging (HDR)

Stanford CS248, Winter 2020

Advanced geometry processing
Fundamental questions
about alignment,
similarly, symmetry,
etc…

Stanford CS248, Winter 2020

Advanced displays/rendering for VR/AR

Near eye light field display

Stanford CS248, Winter 2020

Content creation and capture

Manipulating actors by performance capture

Audio input to mesh animation

Stanford CS248, Winter 2020

The other direction: graphics helping machine learning

Grand Theft Auto Screenshots Synthesized “photorealistic” image
Pix2pixHD

Stanford CS248, Winter 2020

Carla autonomous driving simulator

Stanford CS248, Winter 2020

A fun resource
Ke-sen Huang’s famous site with all the SIGGRAPH papers!
http://kesen.realtimerendering.com/

Stanford CS248, Winter 2020

How to get involved
▪ Email your graphics professors and ask to talk to them about

independent study
- Although to be honest… the best intro line is (“I took and loved

your 300-level class and did well and want to keep going)

▪ A common way to get started
- Hack code to contribute to a Ph.D. student’s research project

Stanford CS248, Winter 2020

Why research (or independent study)?
▪ You will learn way more about a topic than in any class.

▪ You think your undergrad friends are very smart? Come hang out
with Stanford Ph.D. students! (you get to work side-by-side with
them and with faculty). Imagine what level you might rise to.

▪ It’s way more fun to be on the cutting edge. Industry might not
even know about what you are working on. (imagine how much
more valuable you are if you can teach them)

▪ It widens your mind as to what is possible.

Stanford CS248, Winter 2020

Maybe you might like research and decide
you want to go to grad school

Pragmatic comment: Without question, the number one way to get
into a top grad school is to receive a strong letter of recommendation
from faculty members. You get that letter only from being part of a
research team for an extended period of time.

DWIC letter: (“did well in class” letter) What you get when you ask for
a letter from a faculty member who you didn’t do research with, but
got an ‘A‘ in their class. This letter is essentially thrown out by the
Ph.D. admissions committee at good schools.

Stanford CS248, Winter 2020

A very good reference
CMU Professor Mor Harchol-Balter’s writeup:
“Applying to Ph.D. Programs in Computer Science”

http://www.cs.cmu.edu/~harchol/gradschooltalk.pdf

Stanford CS248, Winter 2020

Why not start your own project?

Interested in applying computer science to a
problem that excites you? Give it a shot!

Like a topic enough to be your own boss?
Consider starting your own company.

Why go work for Google or Facebook when you
can start a company that beats them?

(yes, those are great jobs too!)

Stanford CS248, Winter 2020

Thanks for being a great class!
Good luck on projects! Make sure you have fun, that’s the point!
And, above all else, do your best to stay healthy, and keep others healthy.

