Lecture 18:

Parallelizing and Optimizing
Rasterization on Modern
(Mobile) GPUs

Interactive Computer Graphics
Stanford (5248, Winter 2020

Q. What is a big concern in
computing?

Stanford (5248, Winter 2020

A. Power

Stanford (5248, Winter 2020

Two reasons to save power

Run at higher performance Power = heat

— . .
for a fixed amount of time. If a chip gets too hot, it must be
clocked down to cool off

Run at sufficient performance Power = battery

. <— |Long bhattery life is a desirabl
for a longer amount of time. ong battery lite s a desirable
feature in mobile devices

Stanford (5248, Winter 2020

Mobile phone examples

Samsung Galaxy s9 Apple iPhone 8

w1 100% 8 ®

11.5 Watt hours 7 Watt hours

Stanford (5248, Winter 2020

Graphics processors (GPUs) in these mobile phones

Samsung Galaxy s9 Apple iPhone 8

(non US version)

ARM Mali Custom Apple GPU
G72MP18 in A11 Processor

Mali GPU Block Model
APB Control Bus AXI| Data Bus

Stanford (5248, Winter 2020

Ways to conserve power

m Compute less

- Reduce the amount of work required to render a picture
- Less computation = less power

B Read less data

- Data movement has high energy cost

Stanford (5248, Winter 2020

Early depth culling (“Early Z")

Depth testing as we've described it

[Fragment Processing]

I Graphics pipeline
Frame-Buffer Ops > TITTTEF abstraction specifies
that depth test is
performed here!

Pipeline generates, shades, and depth
tests orange triangle fragments in this
region although they do not contribute

to final image. (they are occluded by
the blue triangle)

Stanford (5248, Winter 2020

Early Z culling

B |mplemented by all modern GPUs, not just mobile GPUs

m Application needs to sort geometry to make early Z most effective.
Why?

Rasterization Rasterization

Optimization: reorder
pipeline operations:
perform depth test
immediately following

rasterization and before
Frame-Buffer Ops > PITPPITERN Graphics pipeline Frame-Buffer Ops fragment shading

specifies that depth
test is performed here!

|

{ ., }

l

Key assumption: occlusion results do not depend on fragment shading

- Example operations that prevent use of this early Z optimization: enabling alpha test,
fragment shader modifies fragment’s Z value

Stanford (5248, Winter 2020

Multi-sample anti-aliasing

Stanford (5248, Winter 2020

Supersampling triangle coverage
Multiple point in triangle tests per pixel. Why?

Supersampling to anti-alias triangle edges
Compute coverage using point-in-triangle tests

g\
AIII
/AR
.-----

Texture data can be pre-filtered to avoid aliasing

Implication: ~ one shade per pixel is sufficient

'''''''
- =

No pre-filtering
(aliased result)

Pre-filtered texture

Stanford (5248, Winter 2020

Texture data can be pre-filtered to avoid aliasing

Implication: ~ one shade per pixel is sufficient

No pre-filtering Pre-filtered texture
(aliased result)

Stanford (5248, Winter 2020

Shading sample locations

Quad fragments (2x2 pixel blocks)

Difference neighboring texture coordinates to
approximate derivatives

Shaded quad fragments

Final result: involving coverage

Multi-sample anti-aliasing

Sample surface visibility at a different (higher) rate than surface appearance. location

shading sample

1. multi-sample locations 2. multi-sample coverage 3. quad fragments

|
Em

4. shading results 5. multi-sample color 6. final image pixels

Idea: use supersampling to anti-alias detail due to geometric visibility, use texture

prefiltering (mipmapped texture access) to anti-alias detail to texture
Stanford (5248, Winter 2020

Problem: pixels along edges shaded multiple times

Ug... technique designed to reduce shading in large triangle case actually increases
shading when triangles get smaller (higher detailed scenes)

Shading computations per pixel

Read data less often

Stanford (5248, Winter 2020

Reading less data conserves power

m Goal: redesign algorithms so that they make good use of on-
chip memory or processor caches

- And therefore transfer less data from memory

m Afact you might not have heard:

— Itis far more costly (in energy) to load/store data from
memory, than it is to perform an arithmetic operation

“Ballpark” numbers [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p)

Implications
- Reading 10 GB/sec from memory: ~1.6 watts

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford C5248, Winter 2020

Core 1

CoreN

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

38 GB/sec

<)

What does a data cache do in a processor?

Memory
DDR4 DRAM

(Gigabytes)

Stanford (5248, Winter 2020

Today: a simple mobile GPU

B Asetof programmable cores (run vertex and fragment shader programs)

®m Hardware for rasterization, texture mapping, and frame-buffer access

Rasterizer
Depth Test
Shader
Processor Core =
5
Data Cache -
Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Core 0

Core 1

Core 2

Core3

Stanford (5248, Winter 2020

Block diagrams from vendors

ARM Mali G72MP18

Mali GPU Block Model
APB Control Bus

AXI Data Bus

Vertex Fragment
Queue Queue

Shader Shader
Core Core

Shader Shader
Core Core

L2 Cache
-

Shader
Core

Imagination PowerVR

Host CPU
Host Interface
CPU Bus

Vertex
BE\E!
Master

Coarse
Grain

Scheduler

Compute
Data
Master

Core

Management
System L
Memory
System Interface

Memory
Bus

(in earlier iPhones)

Unified Shading Cluster Array
uUSsC USC

Processor

Shared Shared Shared %)((fl

Texture Unit Texture Unit Texture Unit Processor

UsSC uUSC USC

Multi-level Memory Cache Unit (MCU)

Stanford (5248, Winter 2020

Let’s consider different workloads

Average triangle size MOCIEN AT
#,'_\.,ﬁi —

Fnlll i = MEER 1y
Havana

Image credit:

http //www.mobygames.com/game/andrmd/ghostbusters -slime-city/screenshots/gameShotld,852293/

Stanford (5248, Winter 2020

https://www.theverge.com/2013/11/29/5155726/next-gen-supplementary-piece

Let’s consider different workloads

Scene depth complexity
Average number of overlapping triangles per pixel

Jverdraw

'Y = _ [Imagination Technologie

In this visualization: bright colors = more overlap

Stanford (5248, Winter 2020

One very simple solution

B Let's assume four GPU cores

m Divide screen into four quadrants, each processor processes
all triangles, but only renders triangles that overlap quadrant

B Problems?

Stanford (5248, Winter 2020

Problem: unequal work partitioning

(partition the primitives to parallel units based on screen overlap)

Stanford (5248, Winter 2020

Step 1: parallel geometry processing

m Distribute triangles to the four processors (e.g., round robin)
m |n parallel, processors perform vertex processing

Work queue of triangles in scene

Core1 Core 2 Core3 Core 4

Stanford (5248, Winter 2020

Step 2: sort triangles into per-tile lists

B Divide screen into tiles, one triangle list per “tile” of screen (called a “bin”)

® (Core runs vertex processing, computes 2D triangle/screen-tile overlap,
inserts triangle into appropriate bin(s)

List of scene triangles

/N N

Core 1 Core 2 Core3 Core 4

After processing first five
triangles:

Bin1list: 1,2,3,4
Bin 2 list: 4,5

Stanford (5248, Winter 2020

Step 3: per-tile processing

m |n parallel, the cores process the bins: performing
rasterization, fragment shading, and frame buffer update

List of triangles in bin:

® While (more bin’s left to process):

- Assign bin to available core .
- Forall triangles in bin: Depth Test
Shad
- Rasterize Procesa.;ore Eore =
- Fragment shade .
_ Depth test Render Target Blend
- Render target blend v

final pixels for NxN tile of
render target

Stanford (5248, Winter 2020

What should the size of tiles be?

Stanford (5248, Winter 2020

What should the size of the bins be?

Fine granularity Coarse granularity
I= l= Il Il Il Il 3 A
0 1 Vc\\1
]
, ~
_]

[Image source: NVIDIA] Stanford (5248, Winter 2020

What size should the tiles be?

® Small enough for a tile of the color
buffer and depth buffer (potentially
supersampled) to fit in a shader
processor core’s on-chip storage (i.e.,
cache)

B Tilesizesinrange 16x16 to 64x64
pixels are common

® ARM Mali GPU: commonly uses 16x16
pixel tiles

Stanford (5248, Winter 2020

Tiled rendering “sorts” the scene in 2D space to
enable efficient color/depth buffer access

Consider rendering without a sort: This sample is updated three times
(process triangles in order given by application) during rendering, but it may have
fallen out of cache in hetween
accesses

Now consider step 3 of a tiled
renderer:

Initialize Z and color buffer for tile
for all triangles in tile:
for all each fragment:
shade fragment
update depth/color
write color tile to final image buffer

Q. Why doesn’t the renderer need to read color or depth buffer from memory?
Q. Why doesn’t the renderer need to write depth buffer in memory? *

* Assuming application does not need depth buffer for other purposes. Stanford (5248, Winter 2020

Recall: deferred shading using a G-buffer

Key benefit: shade each sample exactly once.

Depth

Normal Specular
Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Stanford (5248, Winter 2020

Tile-based deferred rendering (TBDR)

A\ —>

11

Many mobile GPUs implement deferred shading in the hardware!
Divide step 3 of tiled pipeline into two phases:

Phase 1: compute what triangle/quad fragment is visible at every sample
Phase 2: perform shading of only the visible quad fragments

12

13

Stanford (5248, Winter 2020

The story so far

m Computation-saving optimizations (shade less)
- multi-sample anti-aliasing
- early Z cull
- tile-based deferred shading

m Bandwidth-saving optimizations

- tile-based rendering
- many more...

Stanford (5248, Winter 2020

Texture compression
(reducing bandwidth cost)

Stanford (5248, Winter 2020

A texture sampling operation

. Compute u and v from screen sample x,y (via evaluation of attribute equations)
. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

Compute mipmap level L

£ W NN =

. Convert normalized texture coordinate (u,v) to texture coordinates texel u,
texel v

U1

. Compute required texels in window of filter **

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:
- Load required texels (in compressed form) from memory

- Decompress texture data

7. Perform tri-linear interpolation according to (texel_u, texel v, L)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration
Stanford (5248, Winter 2020

Texture compression

m Goal: reduce bandwidth requirements of texture access

m Textureis read-only data
- Compression can be performed off-line, so compression algorithms can take
significantly longer than decompression (decompression must be fast!)
- Lossy compression schemes are permissible

m Design requirements
- Support random texel access into texture map (constant time access to any
texel)
- High-performance decompression
- Simple algorithms (low-cost hardware implementation)
- High compression ratio
- High visual quality (lossy is okay, but cannot lose too much!)

Stanford (5248, Winter 2020

Simple scheme: color palette (indexed color)

m Lossless (ifimage contains a small
number of unique colors)

Color palette (eight colors)

0

1

2 3 4 5
Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

0

1

3

6

0

2

6

7

6

7

What is the compression ratio?

Stanford (5248, Winter 2020

Per-block palette

m Block-based compression scheme on 4x4 texel blocks

- Idea: there might be many unique colors across an entire image, but can
approximate all values in any 4x4 texel region using only a few unique colors

m Per-block palette (e.g., four colors in palette)

- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)
- 2 bits per texel (4 bytes for per-texel indices)

= 16 bytes (3X compression on original data: 16x3=48 bytes)

B Can we do better?

Stanford (5248, Winter 2020

S3TC (called BC1 or DXTC by Direct3D)

m Palette of four colors encoded in four bytes:

- Two low-precision base colors: Cy and (; (2 bytes each: RGB 5-6-5 format)

= Other two colors computed from base values
- 1/3C + 2/3(4
- 2/3Co+ 1/3C

m Total footprint of 4x4 texel block: 8 bytes

- 4 hytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)

- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data
values)

m S3TCassumption:
= All texels in a 4x4 block lie on a line in RGB color space

m Additional mode:
- 1f C0 < (1, then third color is 1/,Co + 1/2C; and fourth color is transparent black

Stanford (5248, Winter 2020

S3TC artifacts

$3T1C

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)

But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

[Strom et al. 2007]

Stanford (5248, Winter 2020

PVRTC (Power VR texture compression)

Not a block-based format

- Used in Imagination PowerVR GPUs
Store low-frequency base images A and B
- Base images downsampled by factor of 4 in each dimension (1/16 fewer texels)

- Store base image pixels in RGB 5:5:5 format (+ 1 bit alpha)

Store 2-bit modulation factor per texel
Total footprint: 4 bpp (6:1 ratio)

T

Image B

A -

Image A

Upscale_>
4x4

Upscale
4x4

v

irtual Image bu

[Fenney et al. 2003]

Linear Blend

20

PV RTC [Fenney et al. 2003]

B Decompression algorithm:

- Bilinear interpolate samples from A and B (upsample) to get value at desired texel

- Interpolate upsampled values according to 2-bit modulation factor

Upscale I

R
-~ a0 - 4x4

Image B

irtual Image bu

Linear Blend

'_Upscale
4x4

Image A

Stanford (5248, Winter 2020

PVRTC avoids blocking artifacts

Because it is not block-based

Recall: decompression algorithm involves
bilinear upsampling of low-resolution base
images

(Followed by a weighted combination of the
two images)

Original S3TC 4bpp PVRTC

Image credit: Fenney et al. 2003 Stanford 5248, Winter 2020

Mobile GPU architects go to many steps to
reduce bandwidth to save power

m Compress texture data
B Compress frame buffer
® Eliminate unnecessary memory writes!

- Frame1:
- Render frame as normal
- Compute hash of pixels in each tile on screen
- Frame 2:
- Render frame tile at a time
- Before storing pixel values for tile to memory,
compute hash and see if tile’s contents are the
same as in the last frame
- Ifyes, skip memory write

Slow camera motion: 96% of writes avoided
Fast camera motion; ~50% of writes avoided
(red tile = required a memory write)

[Source: Tom Olson http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-
low-bandwidth-arm-mali-gpus] Stanford C5248, Winter 2020

http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D

Summary

m 3D graphics implementations are highly optimized for power
efficiency

- Tiled rendering for bandwidth efficiency *
- Deferred rendering to reduce shading costs

- Many additional optimizations such as buffer compression,
eliminating unnecessary memory ops, etc.

B |f you enjoy these topics, consider C5348K (Visual Computing
Systems)

* Not all mobile GPUs use tiled rendering as described in this lecture. Stanford €S248. Winter 2020

