
Interactive Computer Graphics
Stanford CS248, Winter 2020

Parallelizing and Optimizing
Rasterization on Modern

(Mobile) GPUs

Lecture 18:

Stanford CS248, Winter 2020

Q. What is a big concern in mobile
computing?

all

Stanford CS248, Winter 2020

A. Power

Stanford CS248, Winter 2020

Two reasons to save power

Run at higher performance
for a fixed amount of time.

Run at sufficient performance
for a longer amount of time.

Power = heat
If a chip gets too hot, it must be
clocked down to cool off

Power = battery
Long battery life is a desirable
feature in mobile devices

Stanford CS248, Winter 2020

Mobile phone examples

7 Watt hours

Apple iPhone 8Samsung Galaxy s9

11.5 Watt hours

Stanford CS248, Winter 2020

Graphics processors (GPUs) in these mobile phones
Apple iPhone 8Samsung Galaxy s9

(non US version)

ARM Mali
G72MP18

Custom Apple GPU
in A11 Processor

Stanford CS248, Winter 2020

Ways to conserve power
▪ Compute less

- Reduce the amount of work required to render a picture
- Less computation = less power

▪ Read less data
- Data movement has high energy cost

Stanford CS248, Winter 2020

Early depth culling (“Early Z”)

Stanford CS248, Winter 2020

Depth testing as we’ve described it

Rasterization

Fragment Processing

Frame-Buffer Ops

Pipeline generates, shades, and depth
tests orange triangle fragments in this
region although they do not contribute
to final image. (they are occluded by
the blue triangle)

Graphics pipeline
abstraction specifies
that depth test is
performed here!

Stanford CS248, Winter 2020

Early Z culling

▪ Implemented by all modern GPUs, not just mobile GPUs

▪ Application needs to sort geometry to make early Z most effective.
Why?

Rasterization

Fragment Processing

Frame-Buffer Ops

Rasterization

Fragment Processing

Frame-Buffer Ops

Optimization: reorder
pipeline operations:
perform depth test
immediately following
rasterization and before
fragment shadingGraphics pipeline

specifies that depth
test is performed here!

Key assumption: occlusion results do not depend on fragment shading
- Example operations that prevent use of this early Z optimization: enabling alpha test,

fragment shader modifies fragment’s Z value

Stanford CS248, Winter 2020

Multi-sample anti-aliasing

Supersampling triangle coverage
Multiple point in triangle tests per pixel. Why?

Supersampling to anti-alias triangle edges
Compute coverage using point-in-triangle tests

Stanford CS248, Winter 2020

Texture data can be pre-filtered to avoid aliasing

Pre-filtered textureNo pre-filtering
(aliased result)

Implication: ~ one shade per pixel is sufficient

Stanford CS248, Winter 2020

Pre-filtered textureNo pre-filtering
(aliased result)

Texture data can be pre-filtered to avoid aliasing
Implication: ~ one shade per pixel is sufficient

Shading sample locations

Quad fragments (2x2 pixel blocks)

Difference neighboring texture coordinates to
approximate derivatives

(u00,v00)

(u10,v10) (u11,v11)

Shaded quad fragments

Final result: involving coverage

Stanford CS248, Winter 2020

Multi-sample anti-aliasing

1. multi-sample locations 2. multi-sample coverage 3. quad fragments

4. shading results 5. multi-sample color 6. final image pixels

Figure 2: Rendering a triangle to a 4x4 pixel screen region using
4⇥ multi-sample anti-aliasing: The triangle’s screen coverage is
sampled four times per pixel (panels 1,2). Shading is sampled once
per pixel at 2x2 pixel granularity (3,4). The results of visibility and
shading computations are stored in the multi-sample buffer (5) and
subsequently filtered to produce final image pixels (6).

If any multi-sample location in a pixel is covered by the triangle,
a shading computation must be performed for that pixel using in-
formation from the triangle. Shading inputs such as texture co-
ordinates are interpolated from values stored at triangle vertices,
using the location of the pixel center as the interpolation/sampling
point [Kessenich 2009; Microsoft 2010]. Panel 3 shows the pixel
centers as dots. If the pixel center lies outside the triangle, the shad-
ing inputs are extrapolated. Alternatively, GPUs permit shading in-
puts to be sampled at the covered multi-sample location which is
closest to the pixel center (centroid sampling [Kessenich 2009; Mi-
crosoft 2010]). Centroid sampling avoids the need to extrapolate
shading inputs, but results in a non-uniform screen-space sampling
of shading near triangle edges.

The information needed to compute a triangle’s shading at a pixel
is encapsulated in a record called a fragment. This information con-
sists of shading inputs, along with triangle coverage and depth in-
formation for each of the pixel’s multi-sample locations. (For con-
venience, we say a fragment “covers” a multi-sample location if
the triangle it was created from did). To support derivative esti-
mates using finite differencing, rasterization generates fragments in
2x2 pixel blocks [Akeley 1993]. We refer to blocks of four frag-
ments as quad fragments. Panel 3 shows the three quad fragments
generated by rasterizing the triangle in gray. It also shows shading
sample locations for each fragment (white dots). Notice that if the
triangle covers any multi-sample location in a 2x2 pixel region, a
quad fragment is generated at these pixels, and shading is computed
at all four corresponding pixel centers. The results of shading each
fragment are given by the colored pixels in panel 4.

Unique color and depth values are stored for each multi-sample in
the frame buffer. After a fragment has been shaded, its color is
stored in all multi-samples covered by the fragment (panel 5). Fi-
nally, at the end of the frame (after all rasterization and depth test-
ing is complete) the colors of multi-samples within each pixel are
filtered to produce a final rendered image (panel 6).

GPU shading is efficient when triangles are large. Most quad frag-
ments are covered entirely by the triangle and the overhead of shad-
ing extra fragments near triangle edges is low. This overhead in-
creases as triangle size shrinks. For example, the triangle in Fig-
ure 2 is approximately two pixels in area, but it causes a GPU to
shade twelve fragments.

2.2 REYES Shading

Unlike GPUs, the REYES architecture [Cook et al. 1987] shades
micropolygon vertices prior to rasterization. To shade approxi-
mately once per screen pixel, REYES must tessellate surfaces into
micropolygons approximately one pixel in area. In REYES, tessel-
lation produces a stream of grids. Although the term grid originally
referred to a regular matrix of quadrilateral micropolygons [Apo-
daca and Gritz 2000], in modern REYES implementations, a grid is
simply a collection of micropolygons with adjacency information.

Grids are the minimal granularity of shading work in REYES. Grid
vertices are shaded together, permitting efficient data-parallel exe-
cution and computation of derivatives via finite differencing (adja-
cent vertices in a grid are known). Grids are also the granularity
of culling: either an entire grid is discarded prior to shading, or
all vertices in the grid are shaded. Thus there is tension between
the need to make grid sizes large (to increase the data-parallel ef-
ficiency of shading computations and to reduce redundant shading
at grid boundaries) and the desire to keep grids small for culling (to
eliminate unnecessary shading of occluded surfaces).

It is simple for a REYES pipeline to sample visibility at a higher
rate than shading because shading occurs prior to rasterization.
During rasterization, surface color at shaded vertices is interpo-
lated onto each visibility sample point covered by a micropolygon.
Shading prior to rasterization is also fundamental to the REYES
pipeline’s support for advanced rendering effects such as motion
and defocus blur. Incorporating these features into a GPU fragment
shading pipeline remains an area of active research [Ragan-Kelley
et al. 2010] and is not attempted in this work.

2.3 Evolving the GPU

Although REYES provides an efficient and proven solution for
shading micropolygons, we have chosen to explore the option of
evolving the GPU pipeline to support real-time micropolygon ren-
dering. Our motivations included the following:

• Achieving real-time performance. Researchers have ported
aspects of the REYES pipeline to GPUs [Wexler et al. 2005;
Patney and Owens 2008] or even the full pipeline [Zhou et al.
2009]. However, REYES rendering performance is still far
from meeting real-time requirements. Evolving the highly-
optimized pipeline architecture of current GPUs (rather than
porting REYES to run as a GPU compute application) seemed
more likely to achieve our performance goals.

• Retaining fine-grain occlusion culling. GPUs shade after
rasterization, allowing hierarchical depth algorithms [Greene
et al. 1993] to efficiently cull occluded fragments at granular-
ities approaching single pixels. We hoped to retain this effi-
ciency.

• Maintaining development continuity. Evolving GPUs and
their current rendering algorithms would allow current GPU-
based applications to transition gradually toward micropoly-
gon rendering, at all times trading off quality and performance
to optimize user experience.

Current GPUs shade fragments immediately after rasterization,
rather than postponing shading until all occlusions are resolved at
the frame buffer. Such “deferred shading” [Deering et al. 1988] is a
tempting optimization that offers the promise of executing exactly
one shading operation per pixel. However, it is eschewed by GPU
architects as a core pipeline mechanism because it interacts badly
with multi-sample anti-aliasing (recall, pixels containing object sil-
houettes must be shaded more than once to obtain smooth edges).

Idea: use supersampling to anti-alias detail due to geometric visibility, use texture
prefiltering (mipmapped texture access) to anti-alias detail to texture

Sample surface visibility at a different (higher) rate than surface appearance.
shading sample

location

Problem: pixels along edges shaded multiple times

Shading computations per pixel
8

7

6

5

4

3

2

1

Ug… technique designed to reduce shading in large triangle case actually increases
shading when triangles get smaller (higher detailed scenes)

Stanford CS248, Winter 2020

Read data less often

Stanford CS248, Winter 2020

Reading less data conserves power
▪ Goal: redesign algorithms so that they make good use of on-

chip memory or processor caches
- And therefore transfer less data from memory

▪ A fact you might not have heard:

-It is far more costly (in energy) to load/store data from
memory, than it is to perform an arithmetic operation
“Ballpark” numbers

- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Stanford CS248, Winter 2020

What does a data cache do in a processor?

38 GB/sec
L3 cache

(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

Stanford CS248, Winter 2020

Today: a simple mobile GPU
▪ A set of programmable cores (run vertex and fragment shader programs)

▪ Hardware for rasterization, texture mapping, and frame-buffer access

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Core 0 Core 1 Core 2 Core 3

Stanford CS248, Winter 2020

Block diagrams from vendors
ARM Mali G72MP18

Imagination PowerVR
(in earlier iPhones)

Stanford CS248, Winter 2020

Let’s consider different workloads
Average triangle size

Image credit:
https://www.theverge.com/2013/11/29/5155726/next-gen-supplementary-piece
http://www.mobygames.com/game/android/ghostbusters-slime-city/screenshots/gameShotId,852293/

https://www.theverge.com/2013/11/29/5155726/next-gen-supplementary-piece

Stanford CS248, Winter 2020

Let’s consider different workloads
Scene depth complexity
Average number of overlapping triangles per pixel

[Imagination Technologies]

In this visualization: bright colors = more overlap

Stanford CS248, Winter 2020

One very simple solution
▪ Let’s assume four GPU cores

▪ Divide screen into four quadrants, each processor processes
all triangles, but only renders triangles that overlap quadrant

▪ Problems?

Stanford CS248, Winter 2020

Problem: unequal work partitioning
(partition the primitives to parallel units based on screen overlap)

1 2

3 4

Stanford CS248, Winter 2020

Step 1: parallel geometry processing
▪ Distribute triangles to the four processors (e.g., round robin)
▪ In parallel, processors perform vertex processing

Work queue of triangles in scene

Core 1 Core 2 Core 3 Core 4

Stanford CS248, Winter 2020

Step 2: sort triangles into per-tile lists
▪ Divide screen into tiles, one triangle list per “tile” of screen (called a “bin”)

▪ Core runs vertex processing, computes 2D triangle/screen-tile overlap,
inserts triangle into appropriate bin(s)

Core 1 Core 2 Core 3 Core 4

List of scene triangles

Bin 1 Bin 2 Bin 3 Bin 4

Bin 5 Bin 6 Bin 7 Bin 8

Bin 9 Bin 10 Bin 11 Bin 12

1 2

3
4

5

Bin 1 list: 1,2,3,4

Bin 2 list: 4,5

After processing first five
triangles:

Stanford CS248, Winter 2020

Step 3: per-tile processing
▪ In parallel, the cores process the bins: performing

rasterization, fragment shading, and frame buffer update

▪ While (more bin’s left to process):
- Assign bin to available core
- For all triangles in bin:

- Rasterize
- Fragment shade
- Depth test
- Render target blend

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

List of triangles in bin:

final pixels for NxN tile of
render target

Stanford CS248, Winter 2020

What should the size of tiles be?

Stanford CS248, Winter 2020

What should the size of the bins be?

Fine granularity Coarse granularity

[Image source: NVIDIA]

Stanford CS248, Winter 2020

What size should the tiles be?
▪ Small enough for a tile of the color

buffer and depth buffer (potentially
supersampled) to fit in a shader
processor core’s on-chip storage (i.e.,
cache)

▪ Tile sizes in range 16x16 to 64x64
pixels are common

▪ ARM Mali GPU: commonly uses 16x16
pixel tiles

Stanford CS248, Winter 2020

Tiled rendering “sorts” the scene in 2D space to
enable efficient color/depth buffer access
Consider rendering without a sort:
(process triangles in order given by application)

8 2

3
4

5

6

1

7

This sample is updated three times
during rendering, but it may have
fallen out of cache in between
accesses

Now consider step 3 of a tiled
renderer:

Initialize Z and color buffer for tile
for all triangles in tile:
 for all each fragment:
 shade fragment
 update depth/color
write color tile to final image buffer

Q. Why doesn’t the renderer need to write depth buffer in memory? *
Q. Why doesn’t the renderer need to read color or depth buffer from memory?

* Assuming application does not need depth buffer for other purposes.

Stanford CS248, Winter 2020

Recall: deferred shading using a G-buffer

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Reflectance) Depth

SpecularNormal

Key benefit: shade each sample exactly once.

Stanford CS248, Winter 2020

Tile-based deferred rendering (TBDR)
▪ Many mobile GPUs implement deferred shading in the hardware!
▪ Divide step 3 of tiled pipeline into two phases:
▪ Phase 1: compute what triangle/quad fragment is visible at every sample
▪ Phase 2: perform shading of only the visible quad fragments

T3

T2

T4

1 2 3

4

T1 1 2

5 6

7

T3

T1 T2

T4

3

none

8

1 2 3

4 5 6

Stanford CS248, Winter 2020

The story so far
▪ Computation-saving optimizations (shade less)

- multi-sample anti-aliasing
- early Z cull
- tile-based deferred shading

▪ Bandwidth-saving optimizations
- tile-based rendering
- many more…

Stanford CS248, Winter 2020

Texture compression
(reducing bandwidth cost)

Stanford CS248, Winter 2020

A texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

3. Compute mipmap level L

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u,
texel_v

5. Compute required texels in window of filter **

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:

- Load required texels (in compressed form) from memory

- Decompress texture data

7. Perform tri-linear interpolation according to (texel_u, texel_v, L)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

Stanford CS248, Winter 2020

Texture compression
▪ Goal: reduce bandwidth requirements of texture access

▪ Texture is read-only data
- Compression can be performed off-line, so compression algorithms can take

significantly longer than decompression (decompression must be fast!)
- Lossy compression schemes are permissible

▪ Design requirements
- Support random texel access into texture map (constant time access to any

texel)
- High-performance decompression
- Simple algorithms (low-cost hardware implementation)
- High compression ratio
- High visual quality (lossy is okay, but cannot lose too much!)

Stanford CS248, Winter 2020

Simple scheme: color palette (indexed color)
▪ Lossless (if image contains a small

number of unique colors)

0 1 2 3 4 5 6 7

Color palette (eight colors)

Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

0 1 3 6

0 2 6 7

1 4 6 7

4 5 6 7 What is the compression ratio?

Stanford CS248, Winter 2020

Per-block palette
▪ Block-based compression scheme on 4x4 texel blocks

- Idea: there might be many unique colors across an entire image, but can
approximate all values in any 4x4 texel region using only a few unique colors

▪ Per-block palette (e.g., four colors in palette)
- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)

- 2 bits per texel (4 bytes for per-texel indices)

- 16 bytes (3x compression on original data: 16x3=48 bytes)

▪ Can we do better?

Stanford CS248, Winter 2020

S3TC (called BC1 or DXTC by Direct3D)
▪ Palette of four colors encoded in four bytes:

- Two low-precision base colors: C0 and C1 (2 bytes each: RGB 5-6-5 format)
- Other two colors computed from base values

- 1/3C0 + 2/3C1
- 2/3C0 + 1/3C1

▪ Total footprint of 4x4 texel block: 8 bytes
- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)
- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data

values)

▪ S3TC assumption:
- All texels in a 4x4 block lie on a line in RGB color space

▪ Additional mode:
- If C0 < C1, then third color is 1/2C0 + 1/2C1 and fourth color is transparent black

Stanford CS248, Winter 2020

S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)

But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

S3TCOriginal (Zoom)Original

[Strom et al. 2007]

Stanford CS248, Winter 2020

PVRTC (Power VR texture compression)
▪ Not a block-based format

- Used in Imagination PowerVR GPUs
▪ Store low-frequency base images A and B

- Base images downsampled by factor of 4 in each dimension (1/16 fewer texels)
- Store base image pixels in RGB 5:5:5 format (+ 1 bit alpha)

▪ Store 2-bit modulation factor per texel
▪ Total footprint: 4 bpp (6:1 ratio)

[Fenney et al. 2003]

Stanford CS248, Winter 2020

PVRTC
▪ Decompression algorithm:

- Bilinear interpolate samples from A and B (upsample) to get value at desired texel

- Interpolate upsampled values according to 2-bit modulation factor

[Fenney et al. 2003]

Stanford CS248, Winter 2020

PVRTC avoids blocking artifacts

Image credit: Fenney et al. 2003

PVRTC

Because it is not block-based

Recall: decompression algorithm involves
bilinear upsampling of low-resolution base
images

(Followed by a weighted combination of the
two images)

Stanford CS248, Winter 2020

Mobile GPU architects go to many steps to
reduce bandwidth to save power
▪ Compress texture data
▪ Compress frame buffer
▪ Eliminate unnecessary memory writes!

Slow camera motion: 96% of writes avoided
Fast camera motion: ~50% of writes avoided

(red tile = required a memory write)

[Source: Tom Olson http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-
low-bandwidth-arm-mali-gpus]

- Frame 1:
- Render frame as normal
- Compute hash of pixels in each tile on screen

- Frame 2:
- Render frame tile at a time
- Before storing pixel values for tile to memory,

compute hash and see if tile’s contents are the
same as in the last frame

- If yes, skip memory write

http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus%5D

Stanford CS248, Winter 2020

Summary
▪ 3D graphics implementations are highly optimized for power

efficiency
- Tiled rendering for bandwidth efficiency *
- Deferred rendering to reduce shading costs
- Many additional optimizations such as buffer compression,

eliminating unnecessary memory ops, etc.

▪ If you enjoy these topics, consider CS348K (Visual Computing
Systems)

* Not all mobile GPUs use tiled rendering as described in this lecture.

