Lecture 15:

Image Compression and Basic Image Processing

Interactive Computer Graphics Stanford CS248, Winter 2020

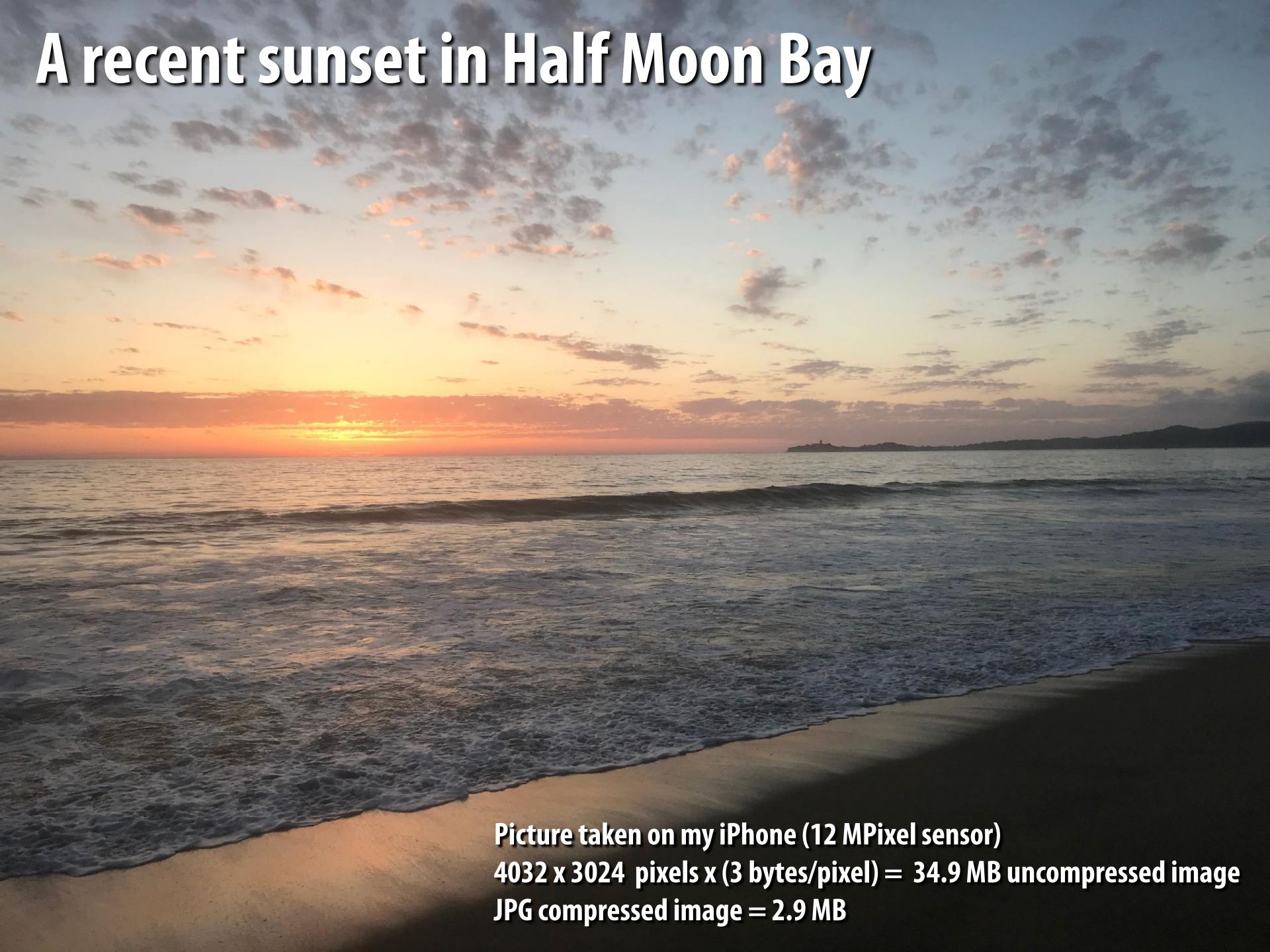
Recurring themes in the course

- Choosing the right representation for a task
 - e.g., choosing the right basis

- Exploiting human perception for computational efficiency
 - Errors/approximations in algorithms can be tolerable if humans do not notice

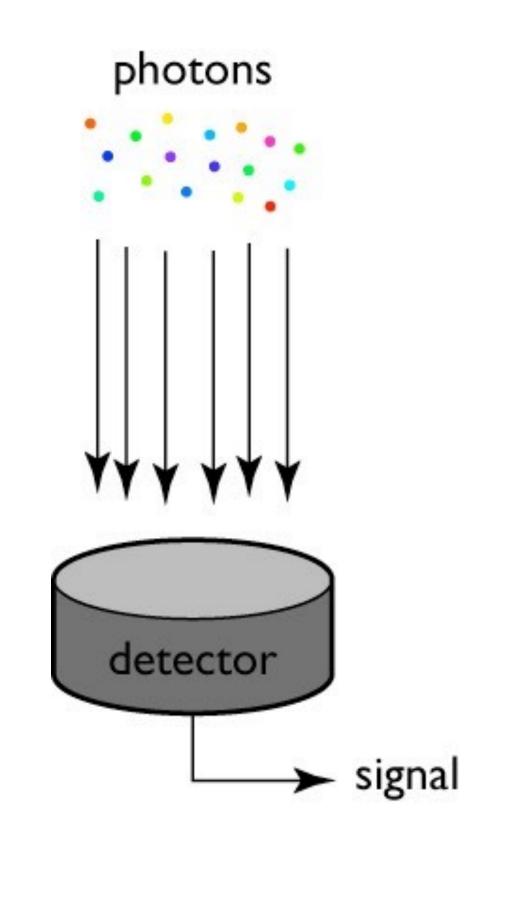
- Convolution as a useful operator
 - To remove high frequency content from images
 - What else can we do with convolution?

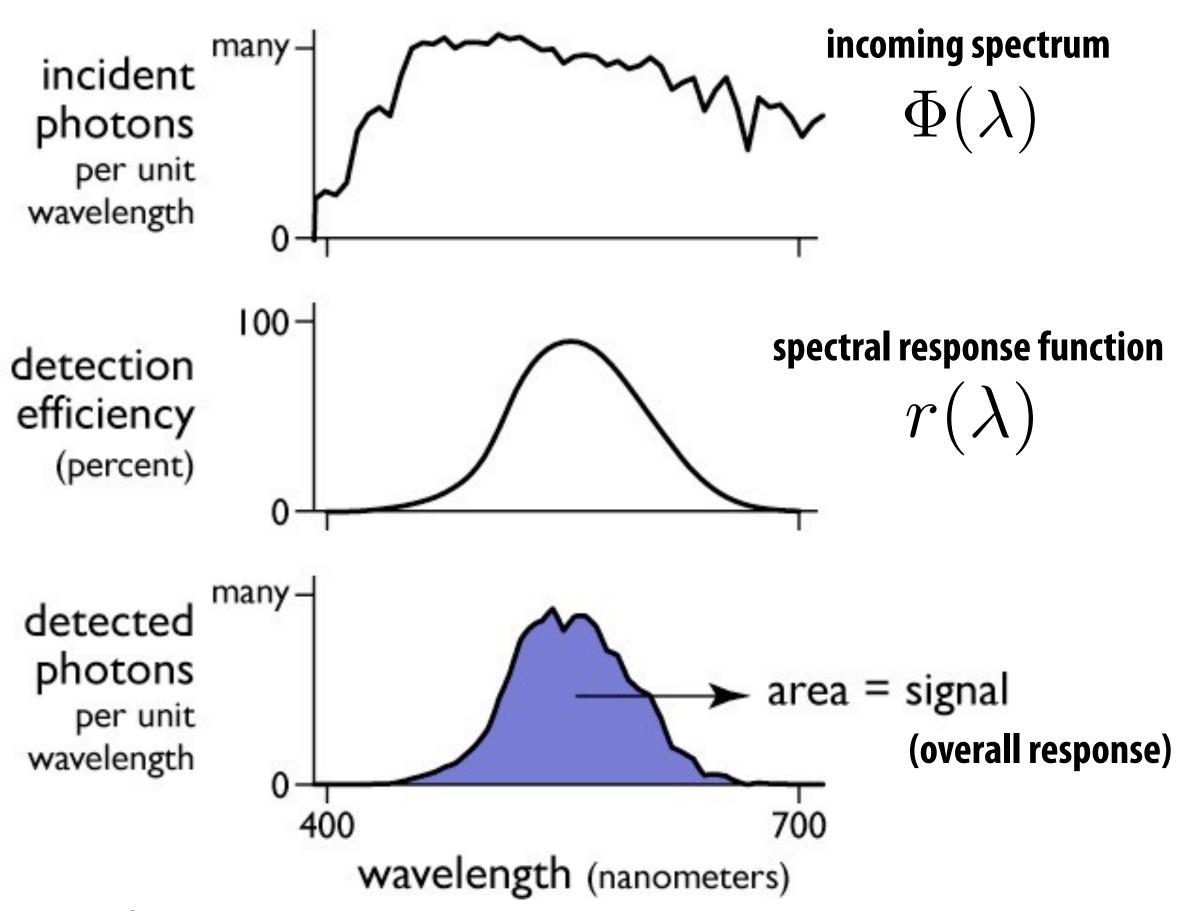
Image Compression



Review from last time

Sensor's response is proportional to amount of light arriving at sensor



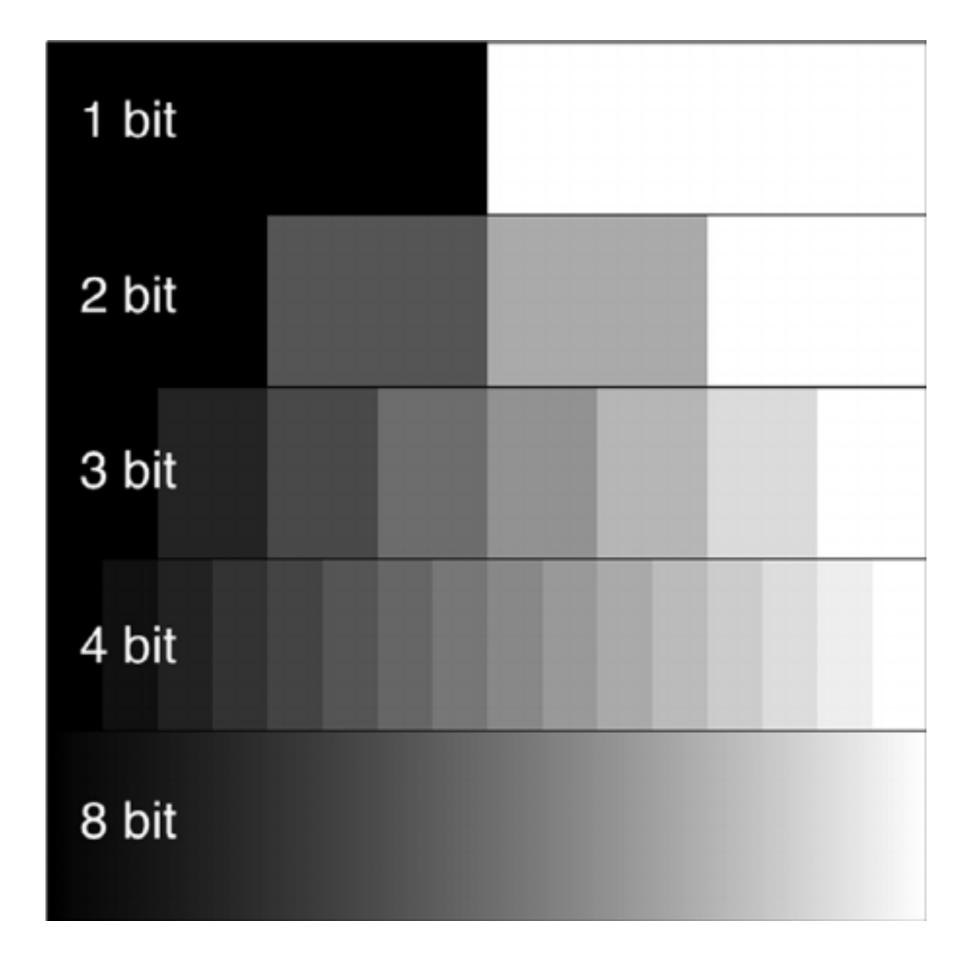


$$R = \int_{\lambda} \Phi(\lambda) r(\lambda) d\lambda$$

Figure credit: Steve Marschner

Encoding numbers

- More bits \rightarrow can represent more unique numbers
- 8 bits \rightarrow 256 unique numbers (0-255)



[Credit: lambert and waters] Stanford CS248, Winter 2020

Idea 1:

What is the most efficient way to encode intensity values as a byte?

 Encode based on how the brain perceives brightness, not based on the response of eye

Lightness (perceived brightness) aka luma

Dark adapted eye: $L^*\propto Y^{0.4}$

Bright adapted eye: $L^{st} \propto Y^{0.5}$

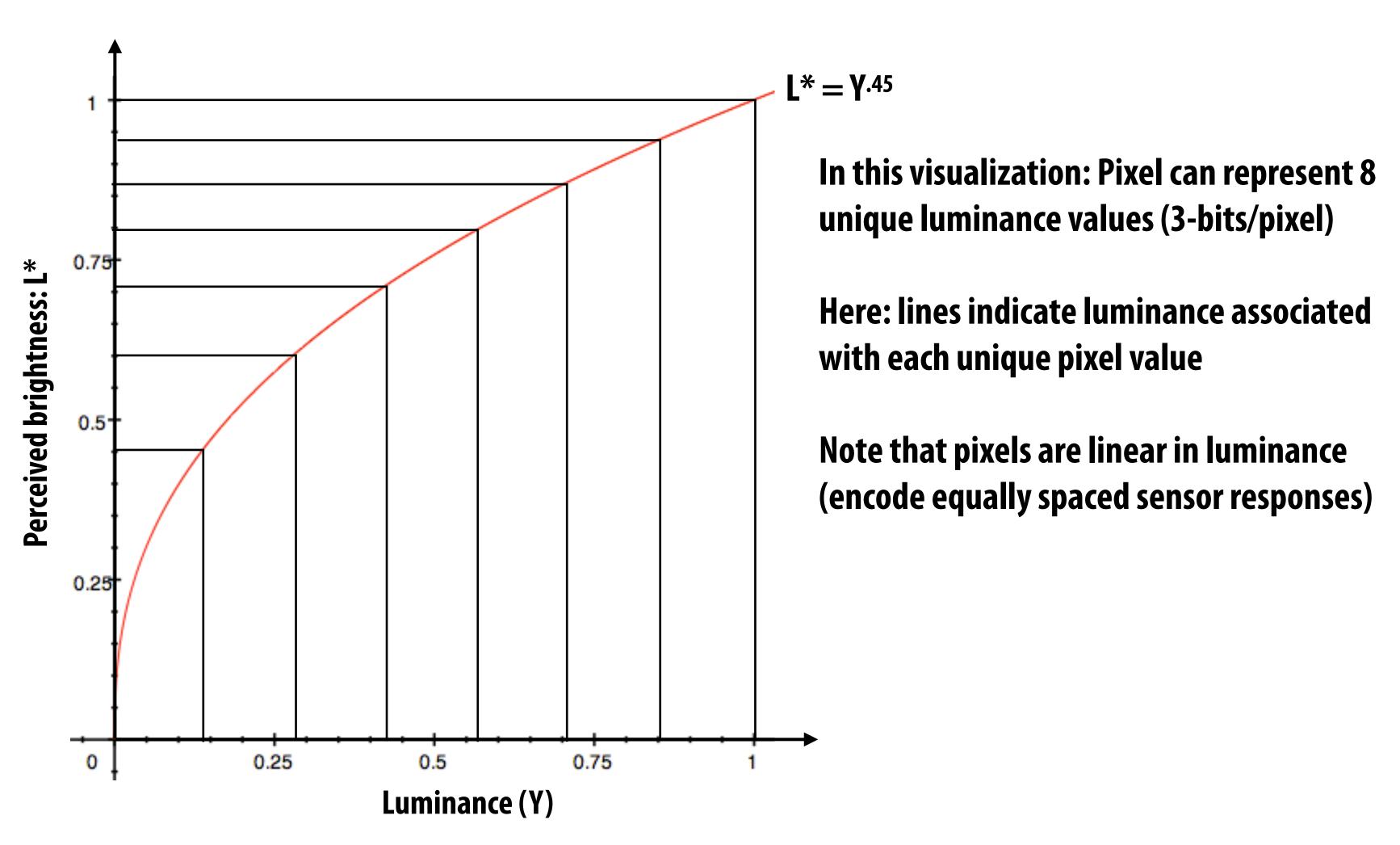
In a dark room, you turn on a light with luminance: Y_1

You turn on a second light that is identical to the first. Total output is now: $Y_2=2Y_1$

Total output appears $2^{0.4}=1.319\,$ times brighter to dark-adapted human

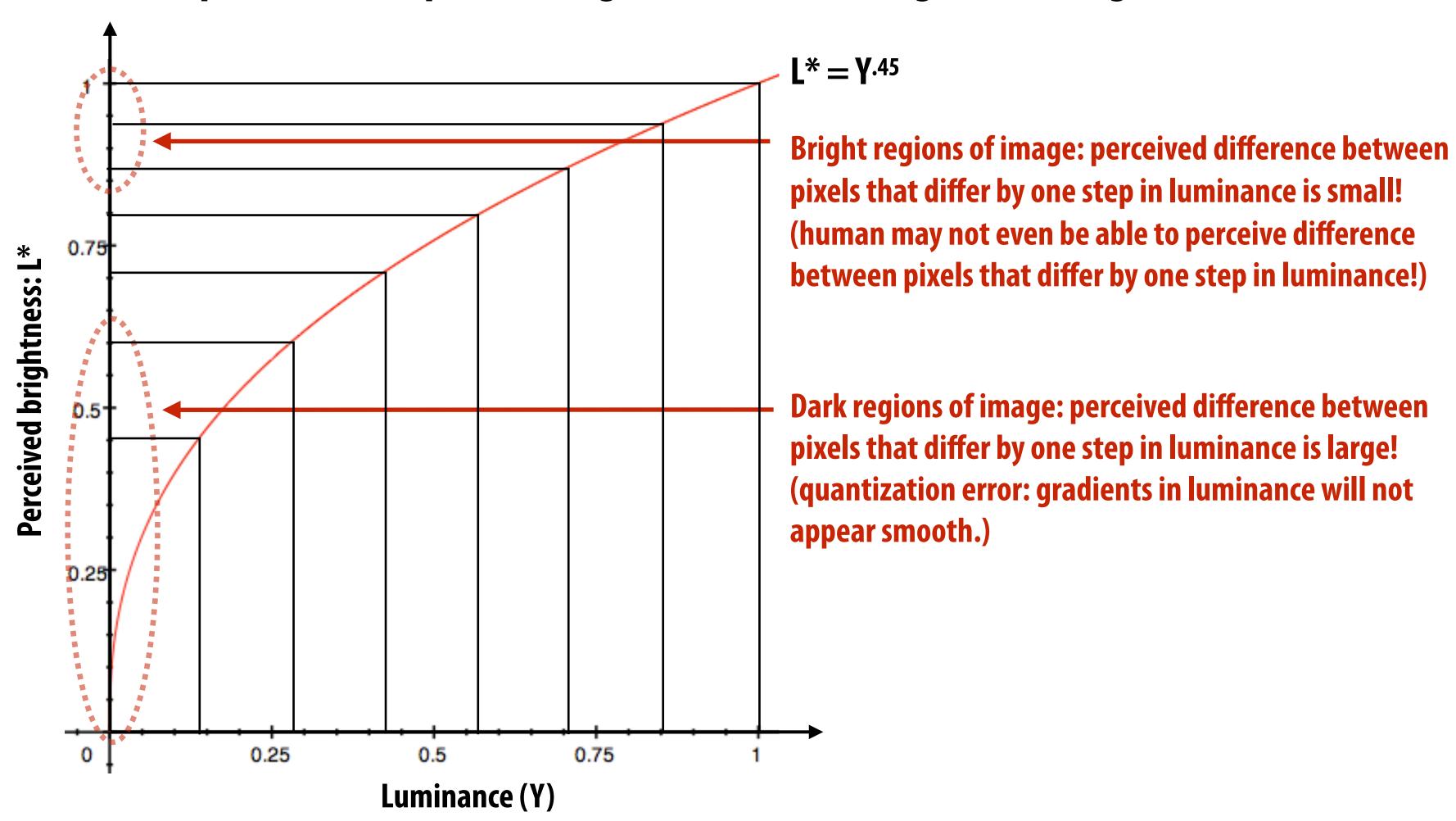
Note: Lightness (L*) is often referred to as luma (Y')

Consider an image with pixel values encoding luminance (linear in energy hitting sensor)



Problem: quantization error

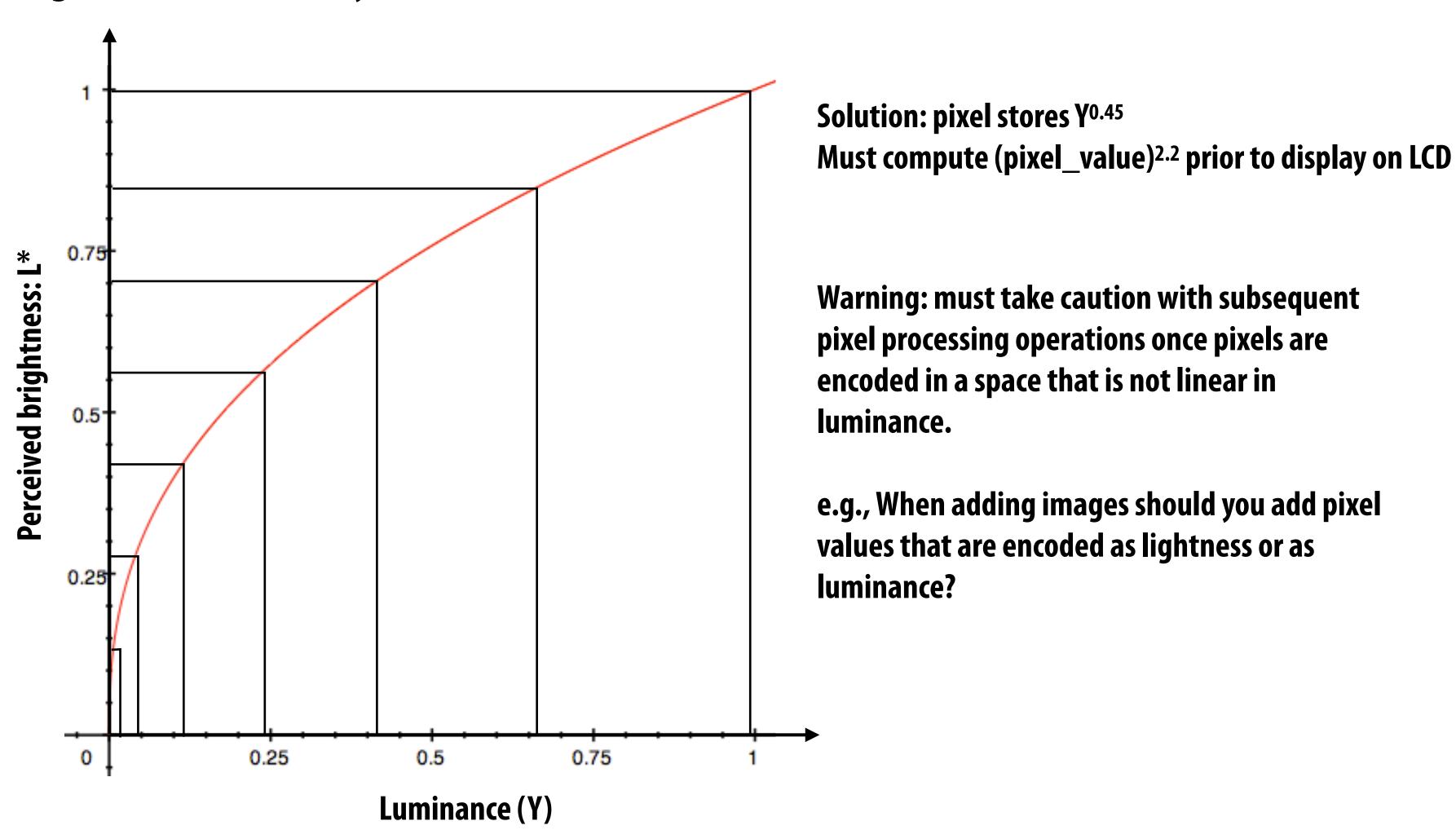
Many common image formats store 8 bits per channel (256 unique values) Insufficient precision to represent brightness in darker regions of image



Rule of thumb: human eye cannot differentiate < 1% differences in luminance

Store lightness, not luminance

Idea: distribute representable pixel values evenly with respect to lightness (perceived brightness), not evenly in luminance (make more efficient use of available bits)



Idea 2:

Chrominance ("chroma") subsampling

- The human visual system is less sensitive to detail in chromaticity than in luminance
 - So it is sufficient to sample chroma more sparsely in space

Recall from last time: RGB color space

Color defined by 3D point in space defined by red, green, and blue primaries.

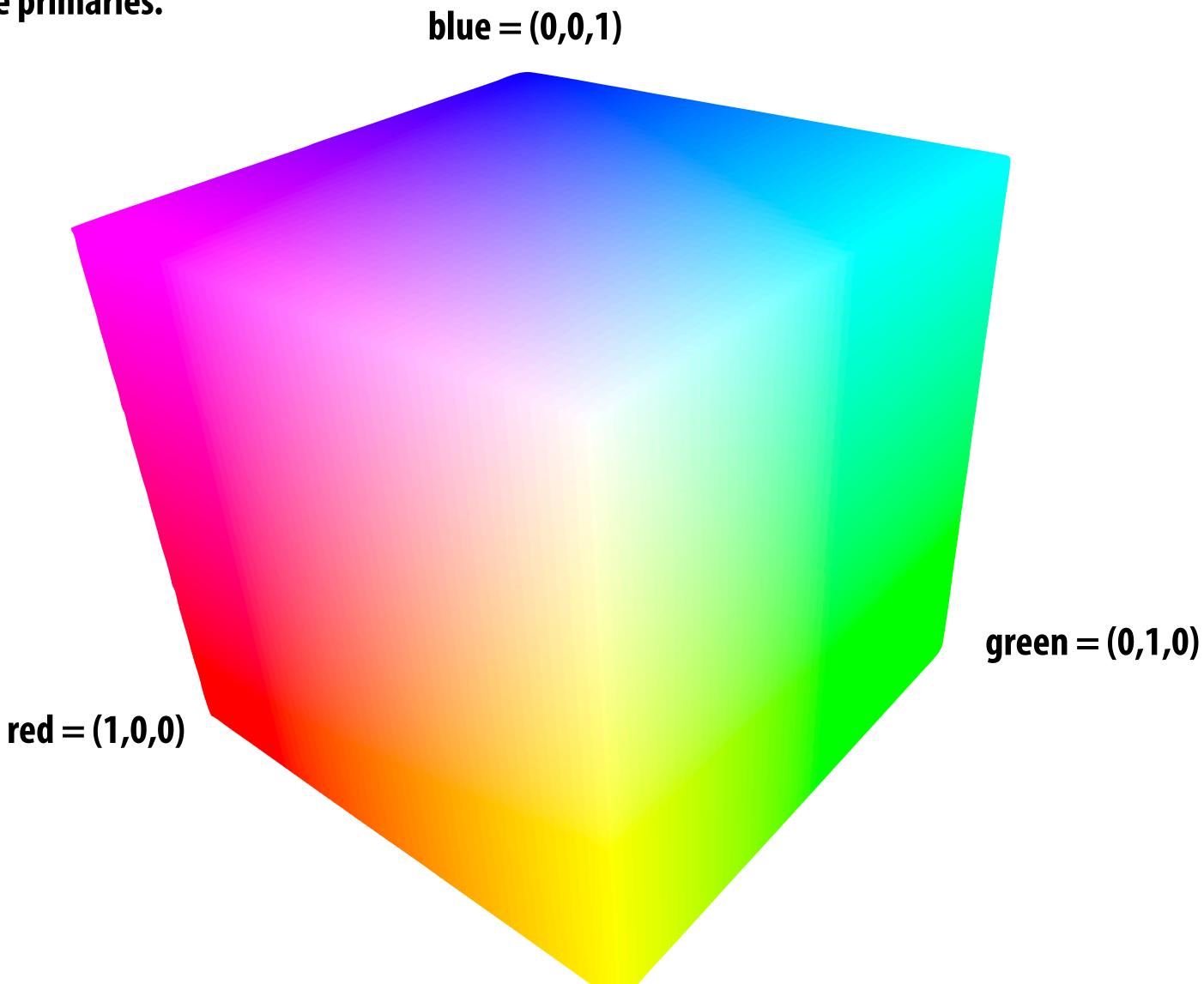
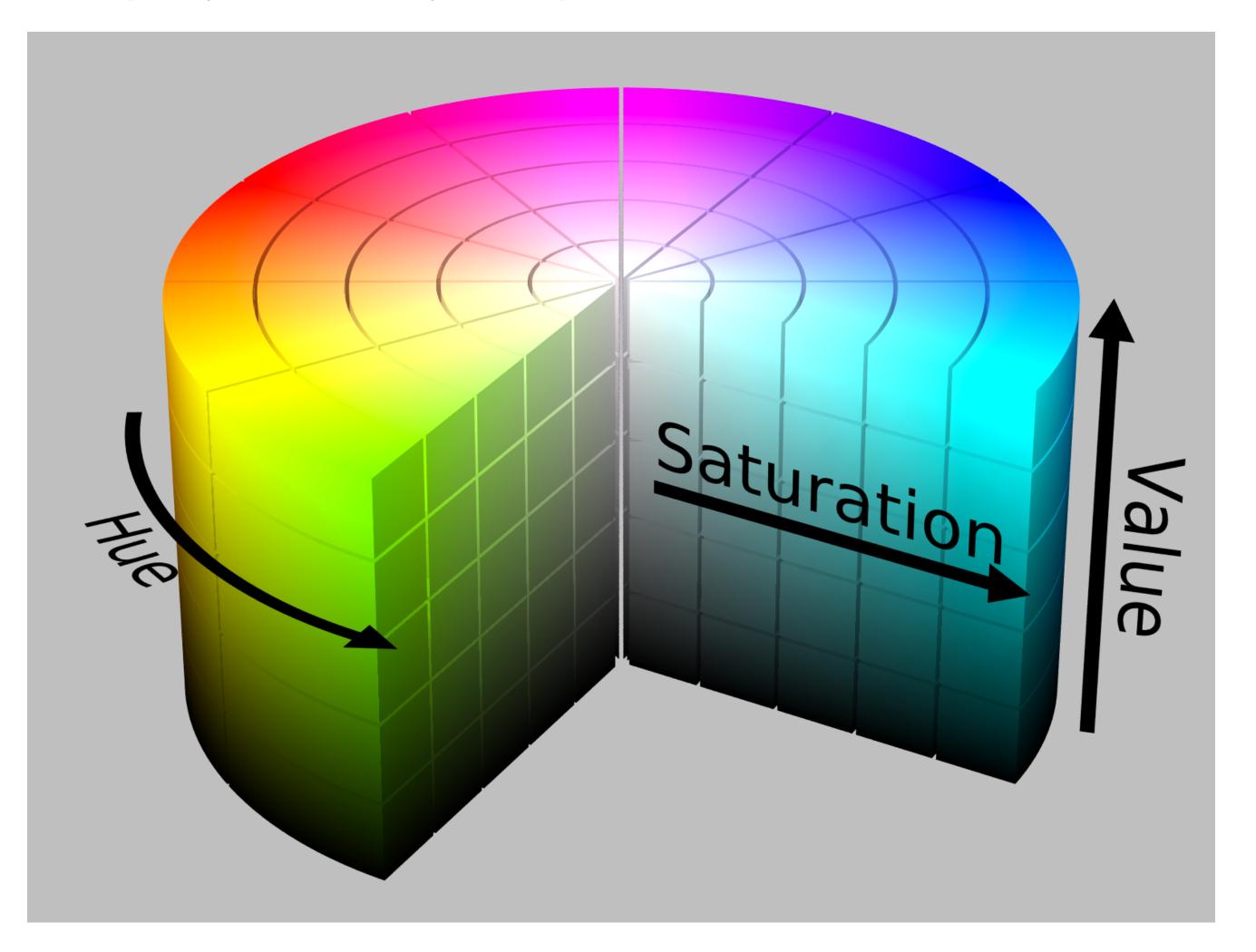


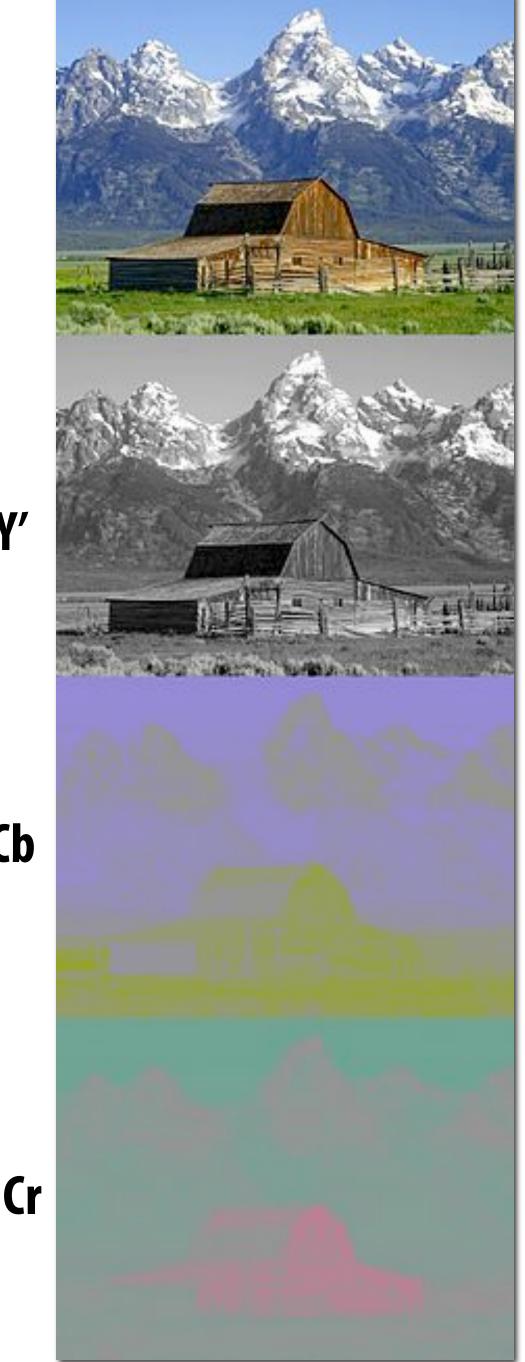
Image credit:

https://forum.luminous-landscape.com/index.php?topic=37695

Recall: same color is represented by different coordinates in other color spaces

Example: HSV (hue, saturation, value)



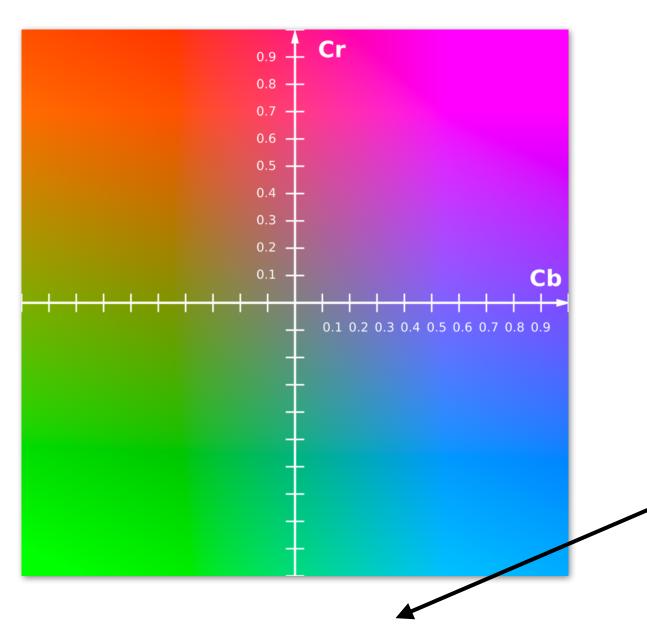


Y'CbCr color space

Y' = luma: perceived luminance (non-linear)

Cb = blue-yellow deviation from gray

Cr = red-cyan deviation from gray



Non-linear RGB (primed notation indicates perceptual (non-linear) space)

Conversion from R'G'B' to Y'CbCr:

$$Y' = 16 + \frac{65.738 \cdot R'_D}{256} + \frac{129.057 \cdot G'_D}{256} + \frac{25.064 \cdot B'_D}{256}$$

$$C_B = 128 + \frac{-37.945 \cdot R'_D}{256} - \frac{74.494 \cdot G'_D}{256} + \frac{112.439 \cdot B'_D}{256}$$

$$C_R = 128 + \frac{112.439 \cdot R'_D}{256} - \frac{94.154 \cdot G'_D}{256} - \frac{18.285 \cdot B'_D}{256}$$

Y

Cb

Original picture of Kayvon

Contents of CbCr color channels downsampled by a factor of 20 in each dimension (400x reduction in number of samples)

Full resolution sampling of luma (Y')

Reconstructed result (looks pretty good)

Chroma subsampling

Y'CbCr is an efficient representation for storage (and transmission) because Y' can be stored at higher resolution than CbCr without significant loss in perceived visual quality

Y' ₀₀ Cb ₀₀ Cr ₀₀	Y′ ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y' ₃₀
Y' ₀₁ Cb ₀₁ Cr ₀₁	Y′ ₁₁	Y' ₂₁ Cb ₂₁ Cr ₂₁	Y ′ ₃₁

Y' ₀₀ Cb ₀₀ Cr ₀₀	Y' ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y' ₃₀
Y' ₀₁	Y' ₁₁	Y' ₂₁	Υ′ ₃₁

4:2:2 representation:

Store Y' at full resolution
Store Cb, Cr at full vertical resolution,
but only half horizontal resolution

X:Y:Z notation:

X = width of block

Y = number of chroma samples in first row

Z = number of chroma samples in second row

4:2:0 representation:

Store Y' at full resolution
Store Cb, Cr at half resolution in both dimensions

Real-world 4:2:0 examples:

most JPG images and H.264 video

Idea 3:

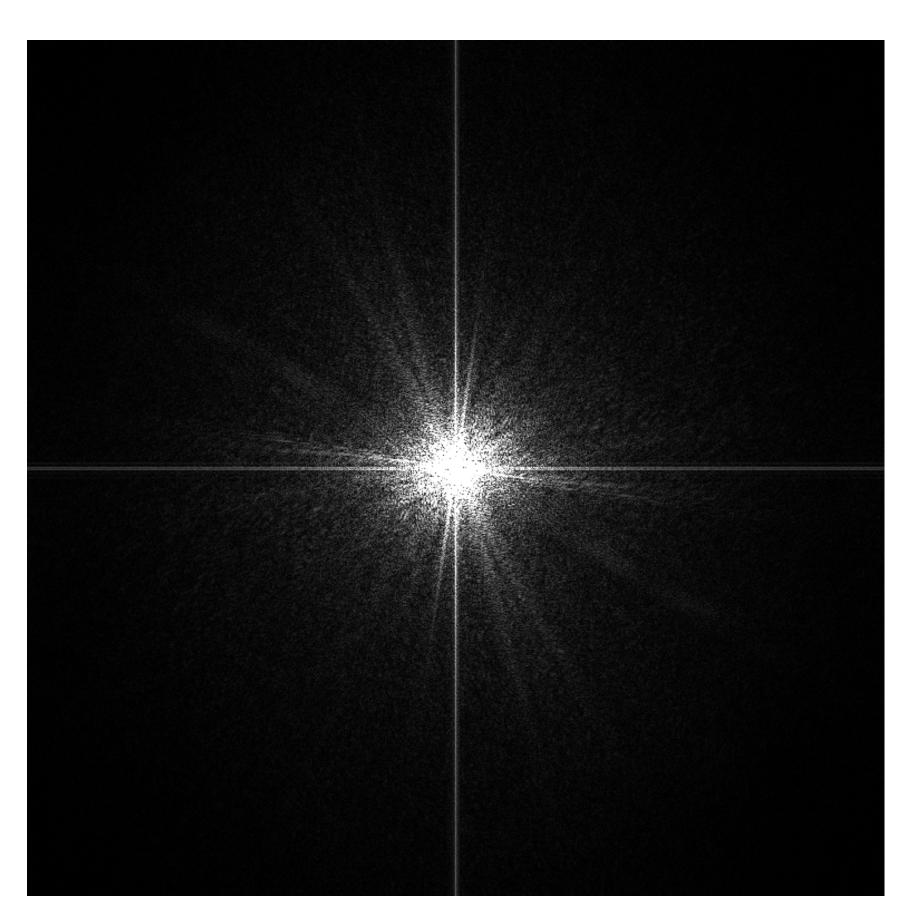
Low frequency content is predominant in the real world

The human visual system is less sensitive to high frequency sources of error in images

So a good compression scheme needs to accurately represent lower frequencies, but it can be acceptable to sacrifice accuracy in representing higher frequencies

Recall: frequency content of images

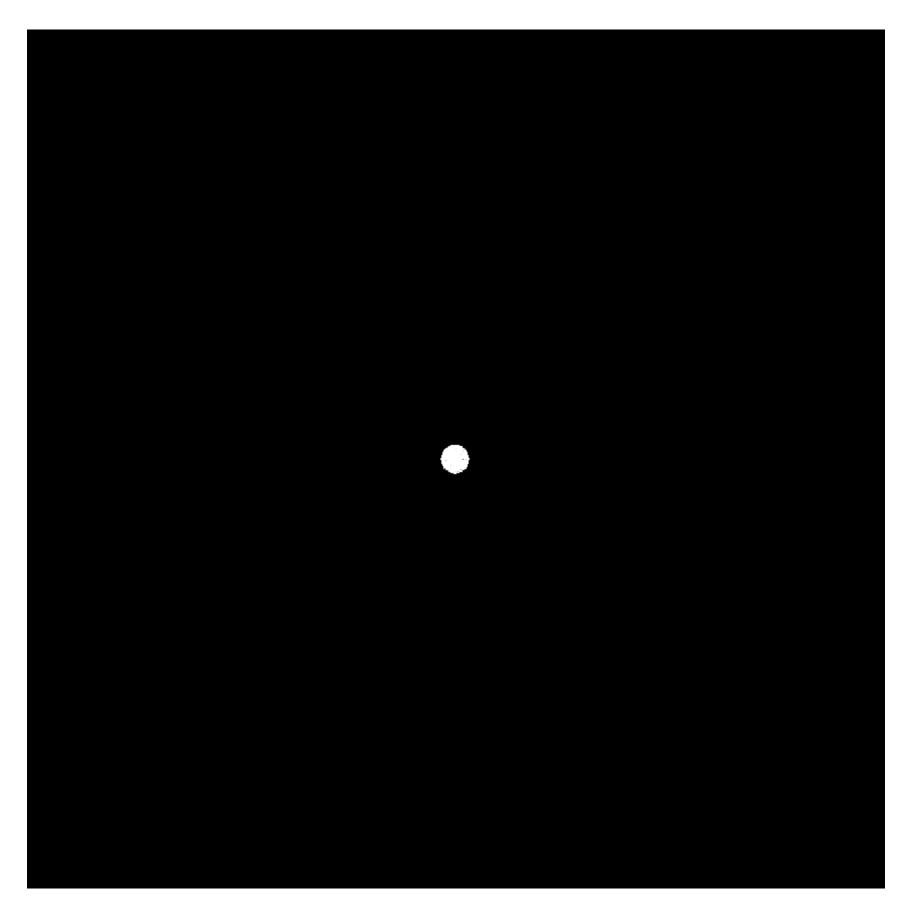
Spatial domain result



Spectrum

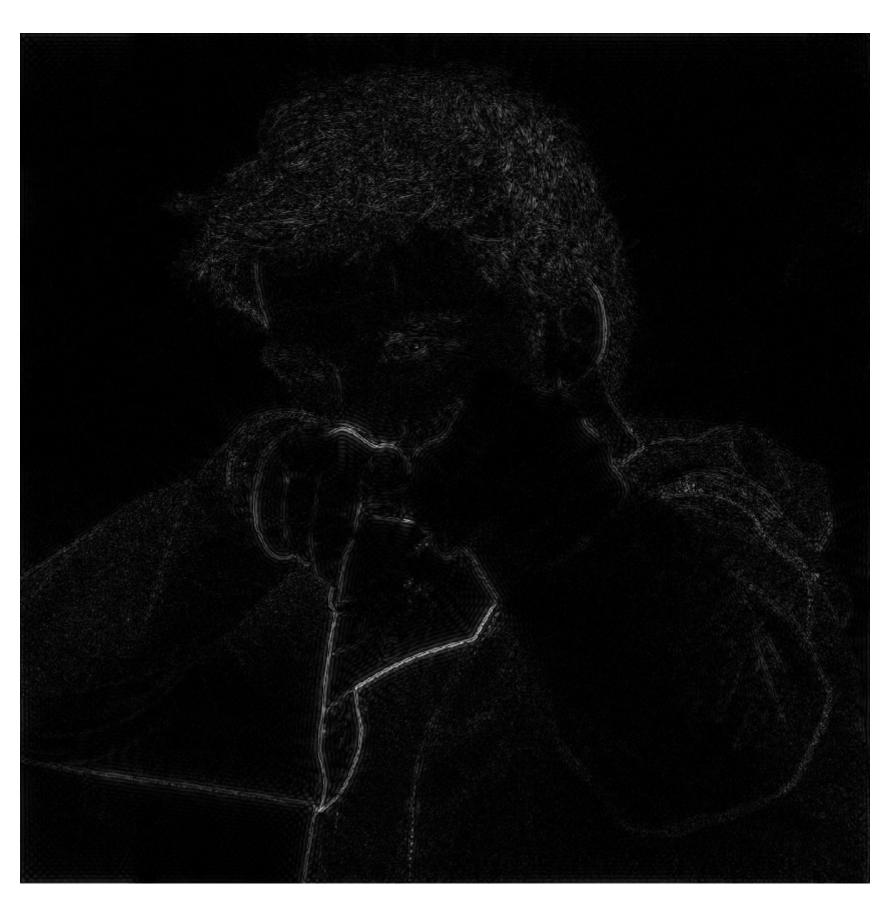
Recall: frequency content of images

Spatial domain result

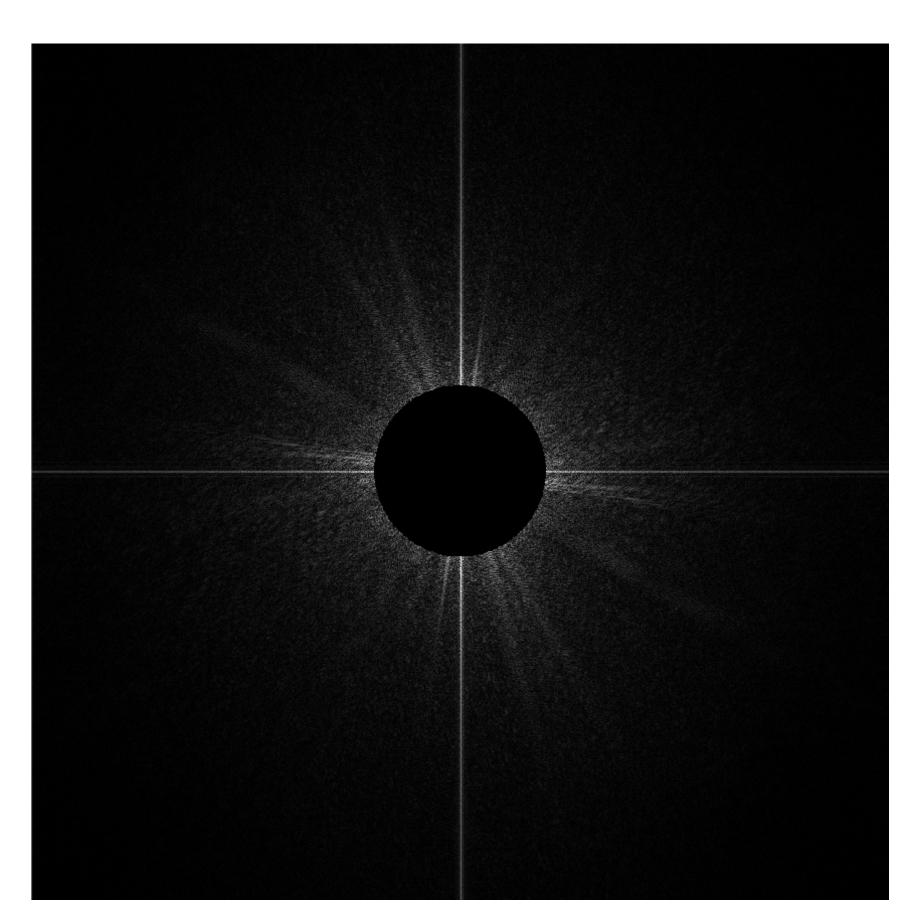


Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Recall: frequency content of images



Spatial domain result (strongest edges)

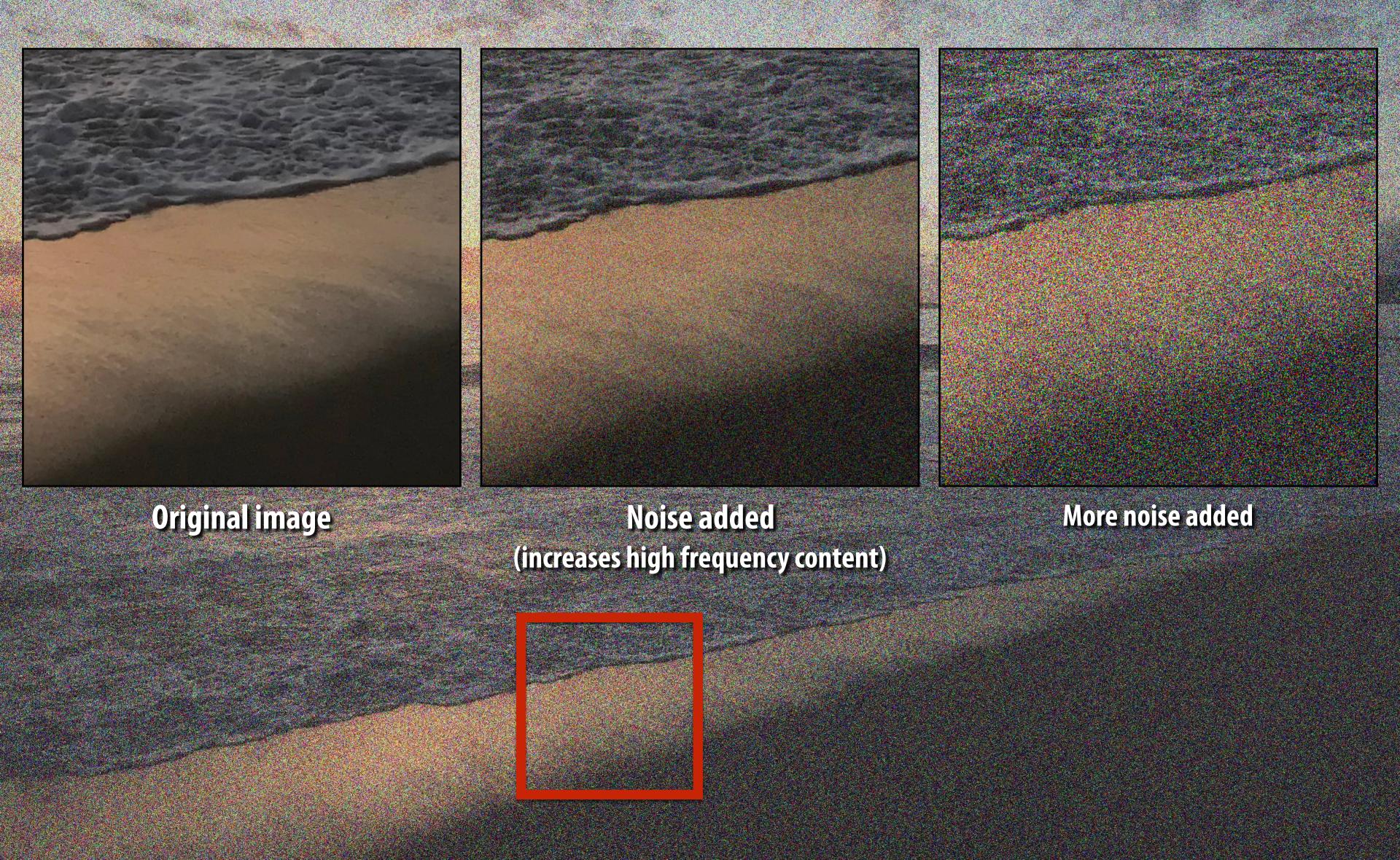


Spectrum (after high-pass filter)
All frequencies below threshold
have 0 magnitude

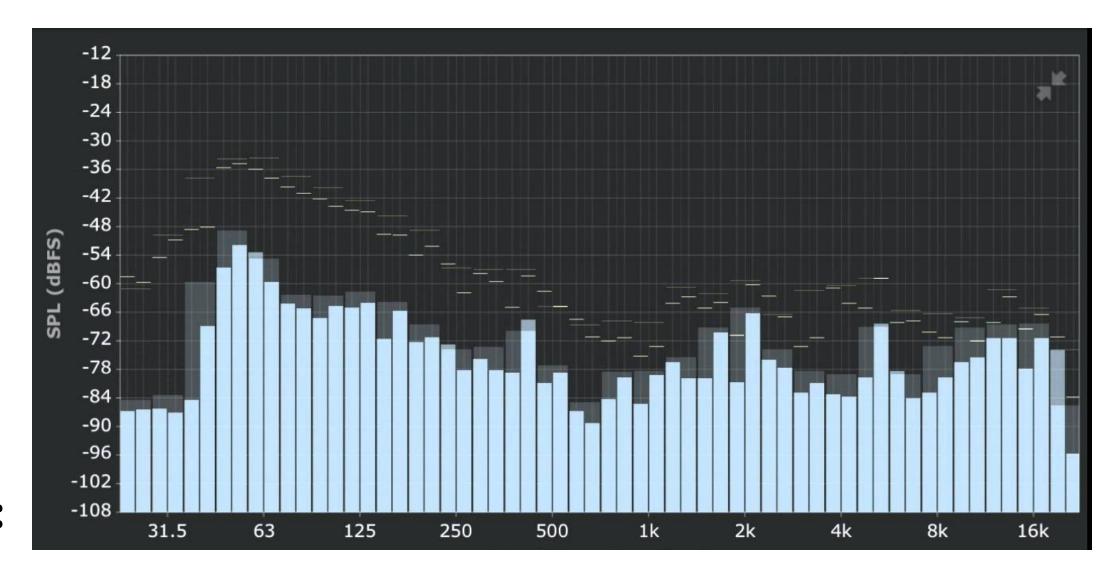
A recent sunset in Half Moon Bay (with noise added)

A recent sunset in Half Moon Bay (with more noise added)

A recent sunset in Half Moon Bay

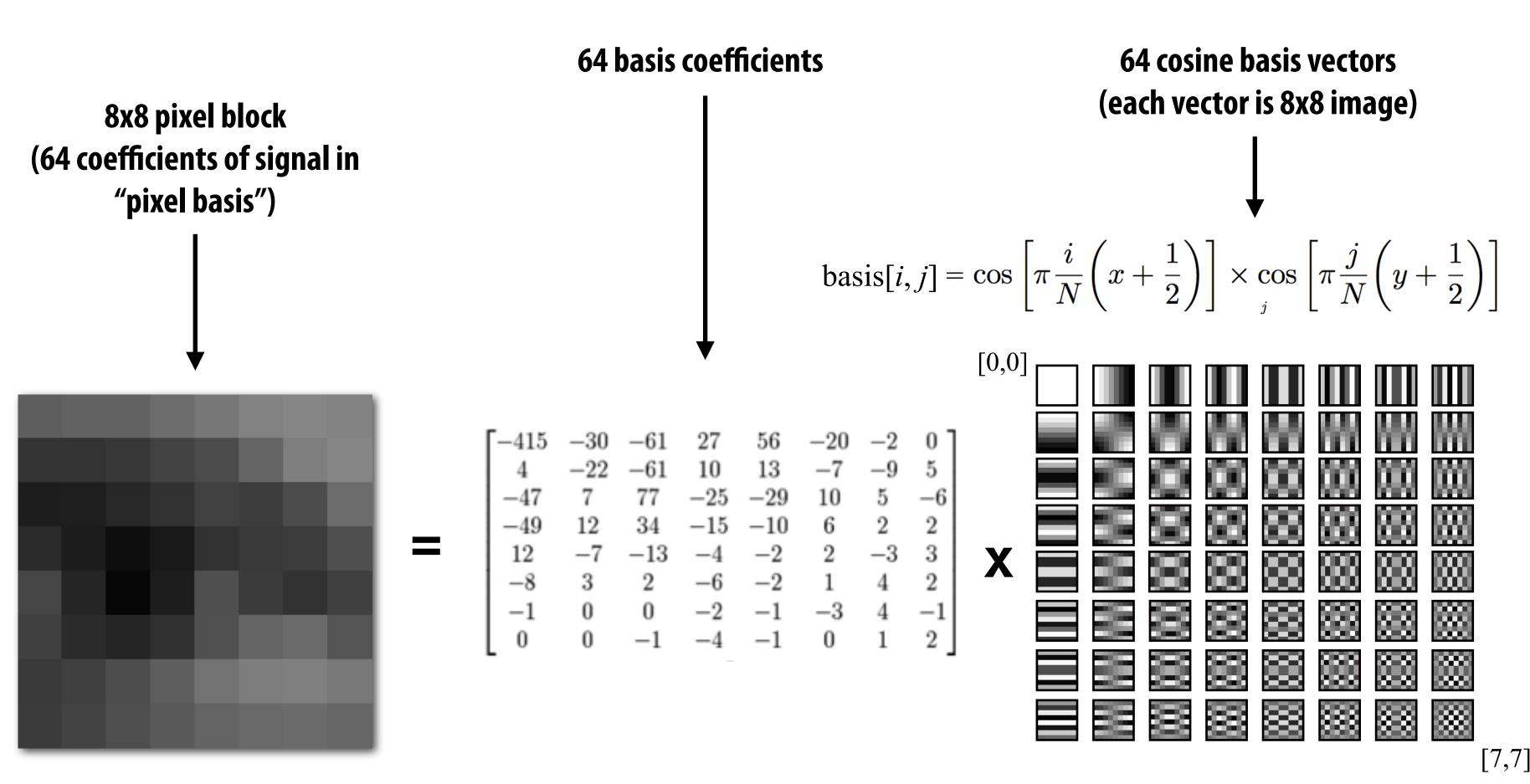


What is a good representation for manipulating frequency content of images?



Hint:

Image transform coding via discrete cosign transform (DCT)

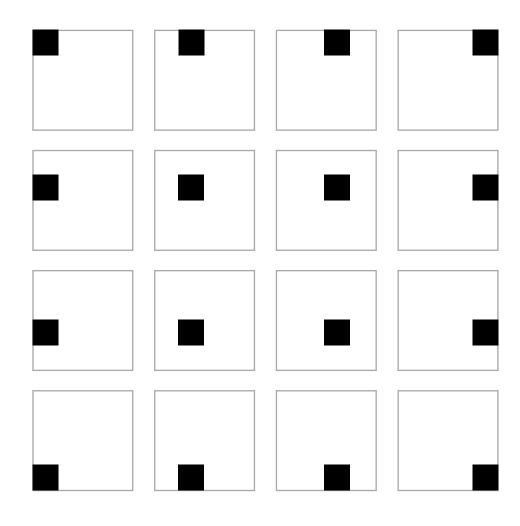


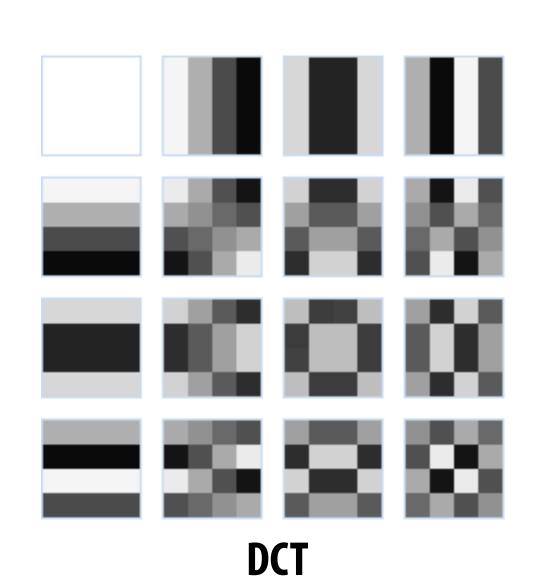
In practice: DCT applied to 8x8 pixel blocks of Y' channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

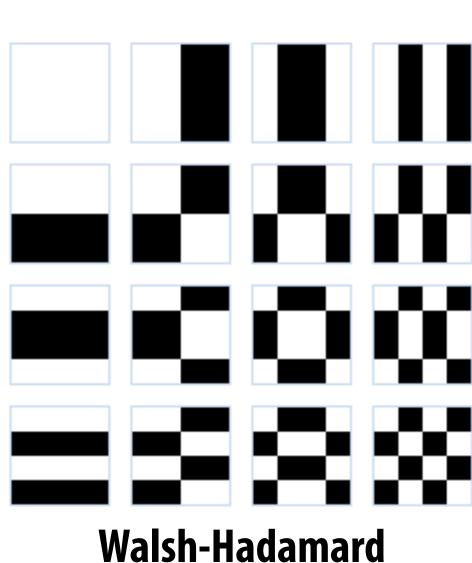
Examples of other bases

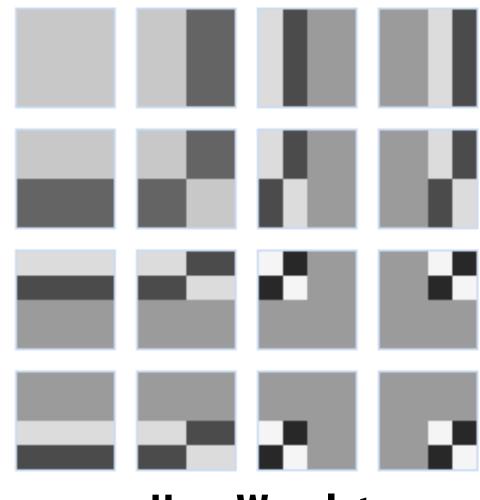
This slide illustrates basis images for 4x4 block of pixels (although JPEG works on 8x8 blocks)

Pixel Basis (Compact: each coefficient in representation only effects a single pixel of output)





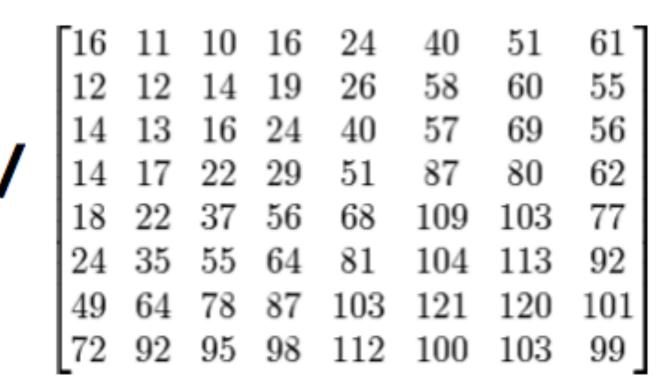




Quantization

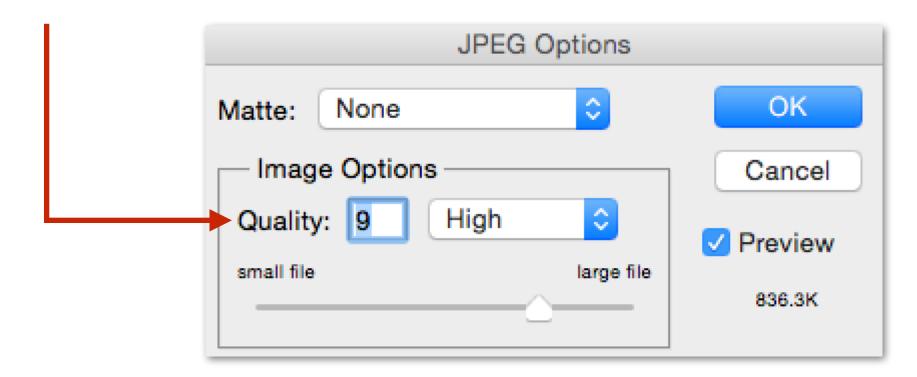
$$\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$$

Result of DCT (representation of image in cosine basis)



Quantization Matrix

Changing JPEG quality setting in your favorite photo app modifies this matrix ("lower quality" = higher values for elements in quantization matrix)



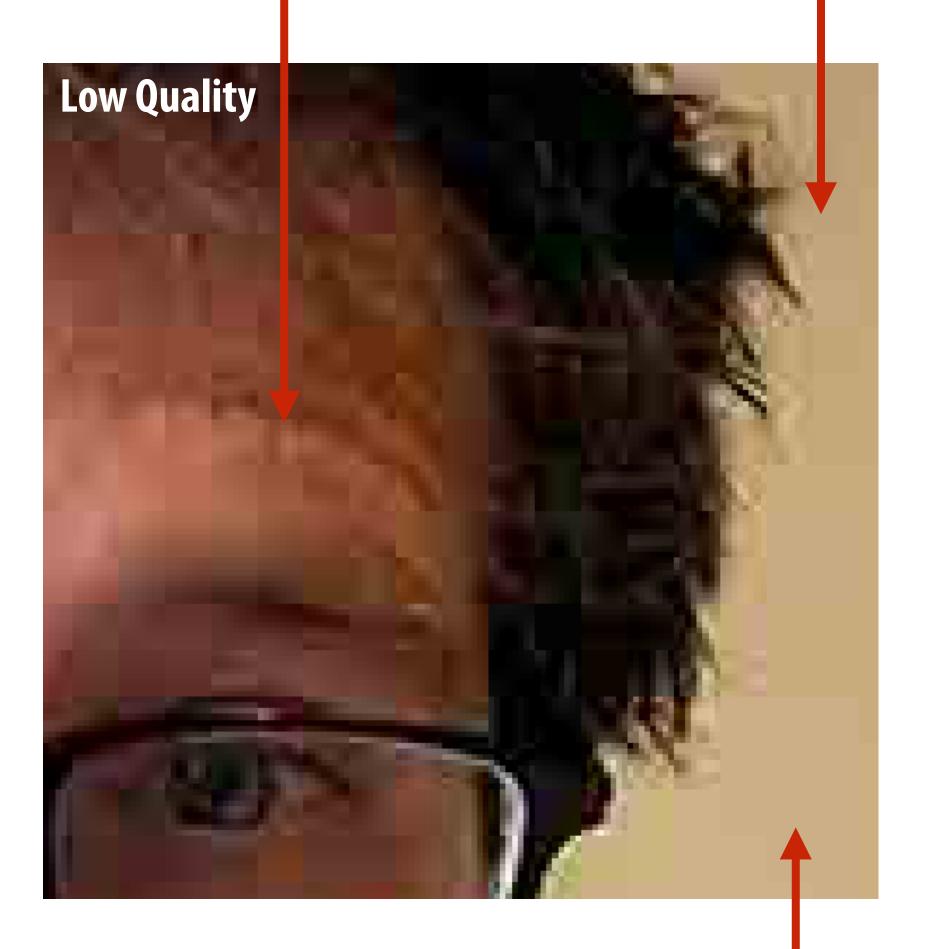
Quantization produces small values for coefficients (only few bits needed per coefficient) Quantization zeros out many coefficients

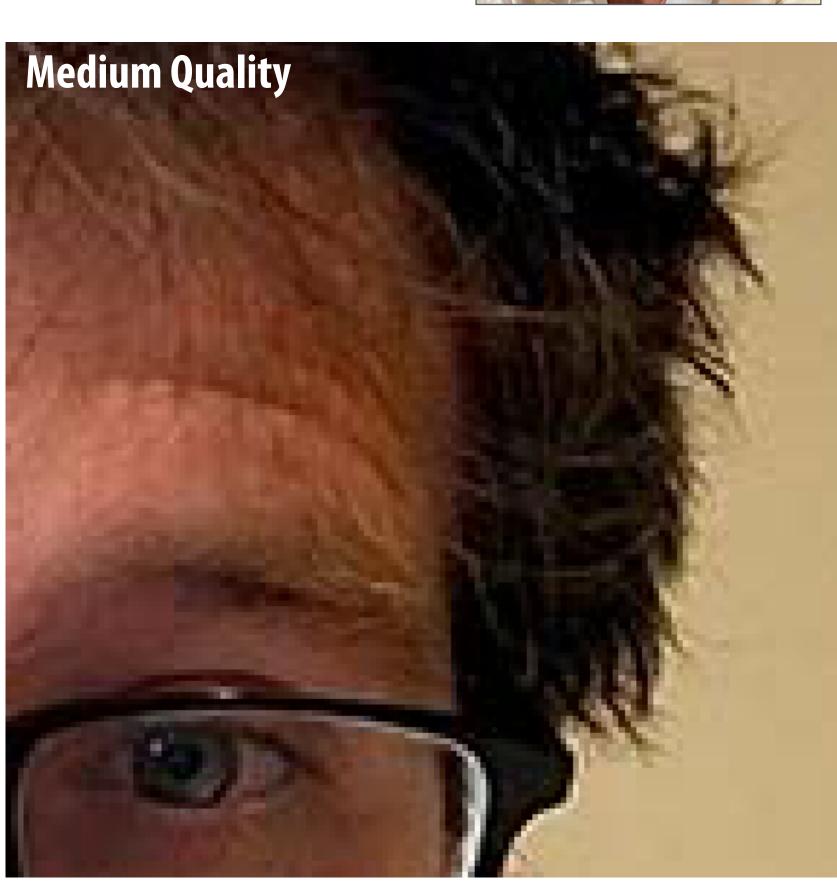
[Credit: Wikipedia, Pat Hanrahan] Stanford CS248, Winter 2020

JPEG compression artifacts

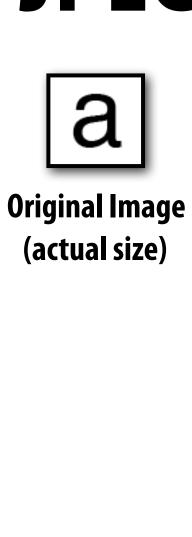
Noticeable 8x8 pixel block boundaries

Noticeable error near high gradients





JPEG compression artifacts



Original Image

Quality Level 3

Quality Level 9

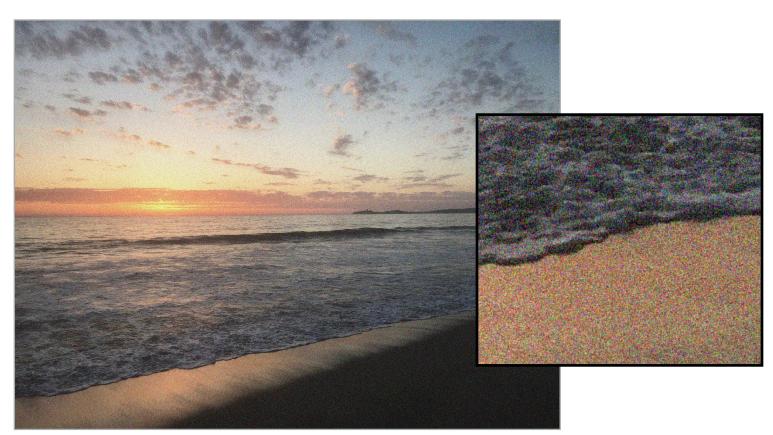
Quality Level 1

Quality Level 6

Why might JPEG compression not be a good compression scheme for illustrations and rasterized text?

Images with high frequency content do not exhibit as high compression ratios. Why?

Original image: 2.9MB JPG



Medium noise: 22.6 MB JPG



High noise: 28.9 MB JPG

Photoshop JPG compression level = 10 used for all compressed images

Uncompressed image: 4032 x 3024 x 24 bytes/pixel = 36.6 MB

Lossless compression of quantized DCT values

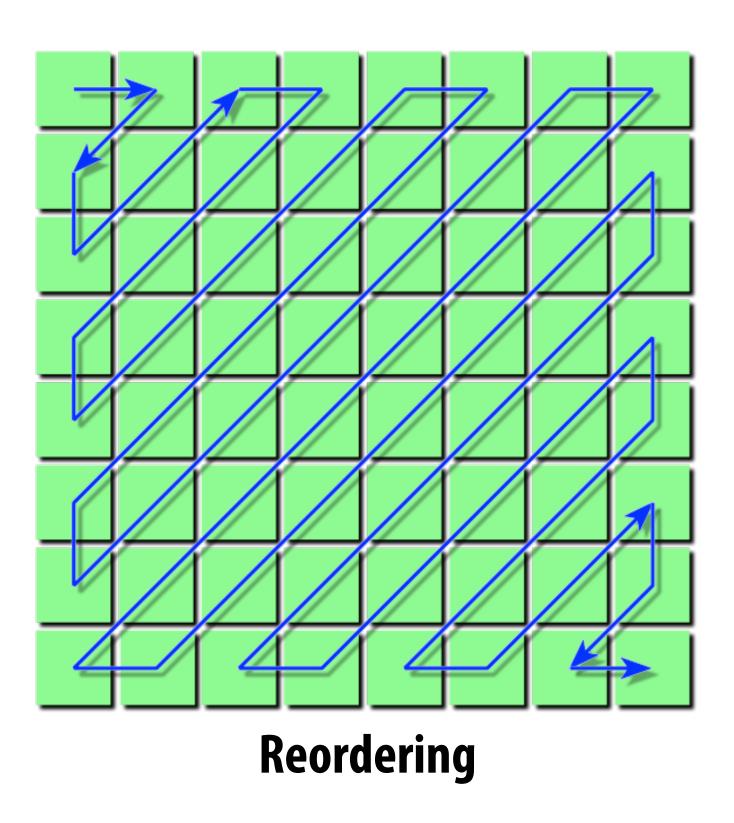
Quantized DCT Values

Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) 0's

Huffman encode non-zero values



JPEG compression summary

Credit: Pat Hanrahan

Coefficient reordering

JPEG compression summary

Convert image to Y'CbCr

Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)

For each color channel (Y', Cb, Cr):

For each 8x8 block of values

Compute DCT

Quantize results

(information loss occurs here)

Reorder values

Run-length encode 0-spans

Huffman encode non-zero values

Key idea: exploit characteristics of human perception to build efficient image storage and image processing systems

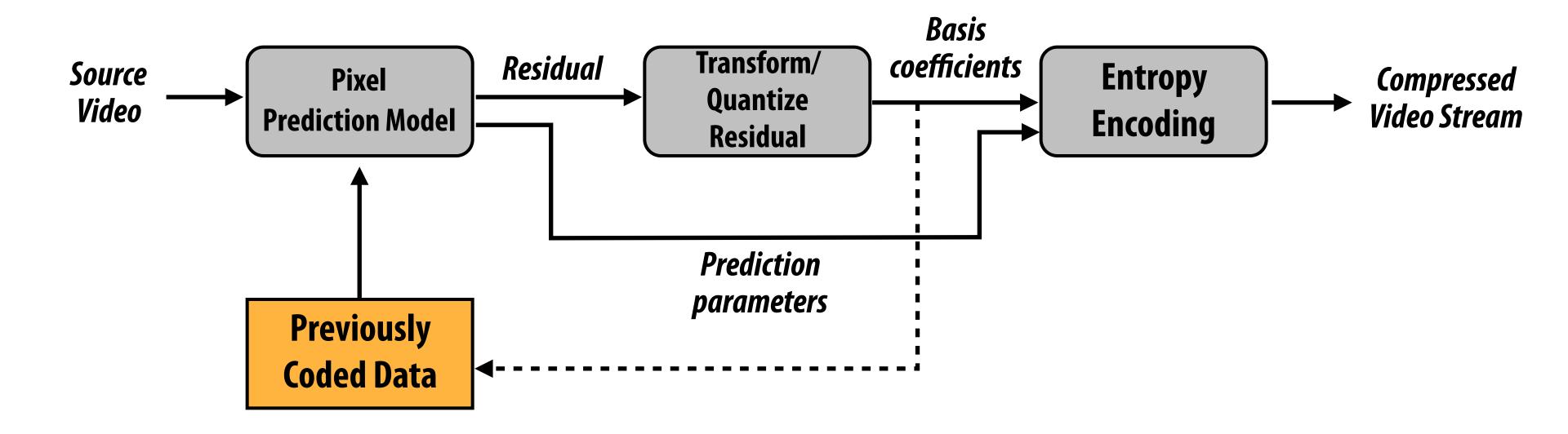
- Separation of luminance from chrominance in color representation (Y'CrCb)
 allows reduced resolution in chrominance channels (4:2:0)
- Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable values uniformly in perceptual space)
- JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies
 - Human brain is more tolerant of errors in high frequency image components than in low frequency ones
 - Images of the real world are dominated by low-frequency components

Aside: video compression adds two main ideas

- Exploiting redundancy:
 - Intra-frame redundancy: value of pixels in neighboring regions of a frame are good <u>predictor</u> of values for other pixels in the frame (spatial redundancy)
 - Inter-frame redundancy: pixels from nearby frames in time are a good <u>predictor</u> for the current frame's pixels (temporal redundancy)

Motion vector visualization

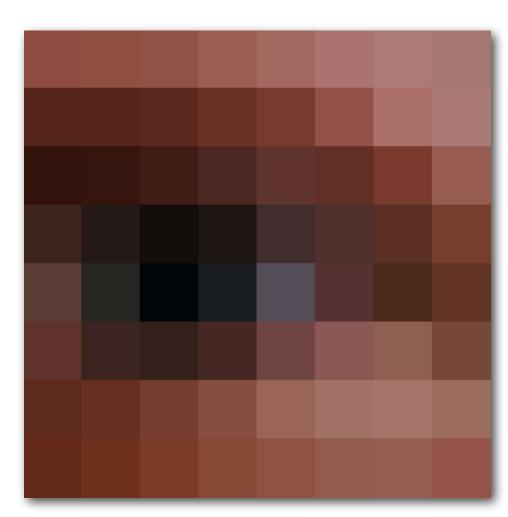
Video compression overview



Residual: difference between predicted pixel values and input video pixel values

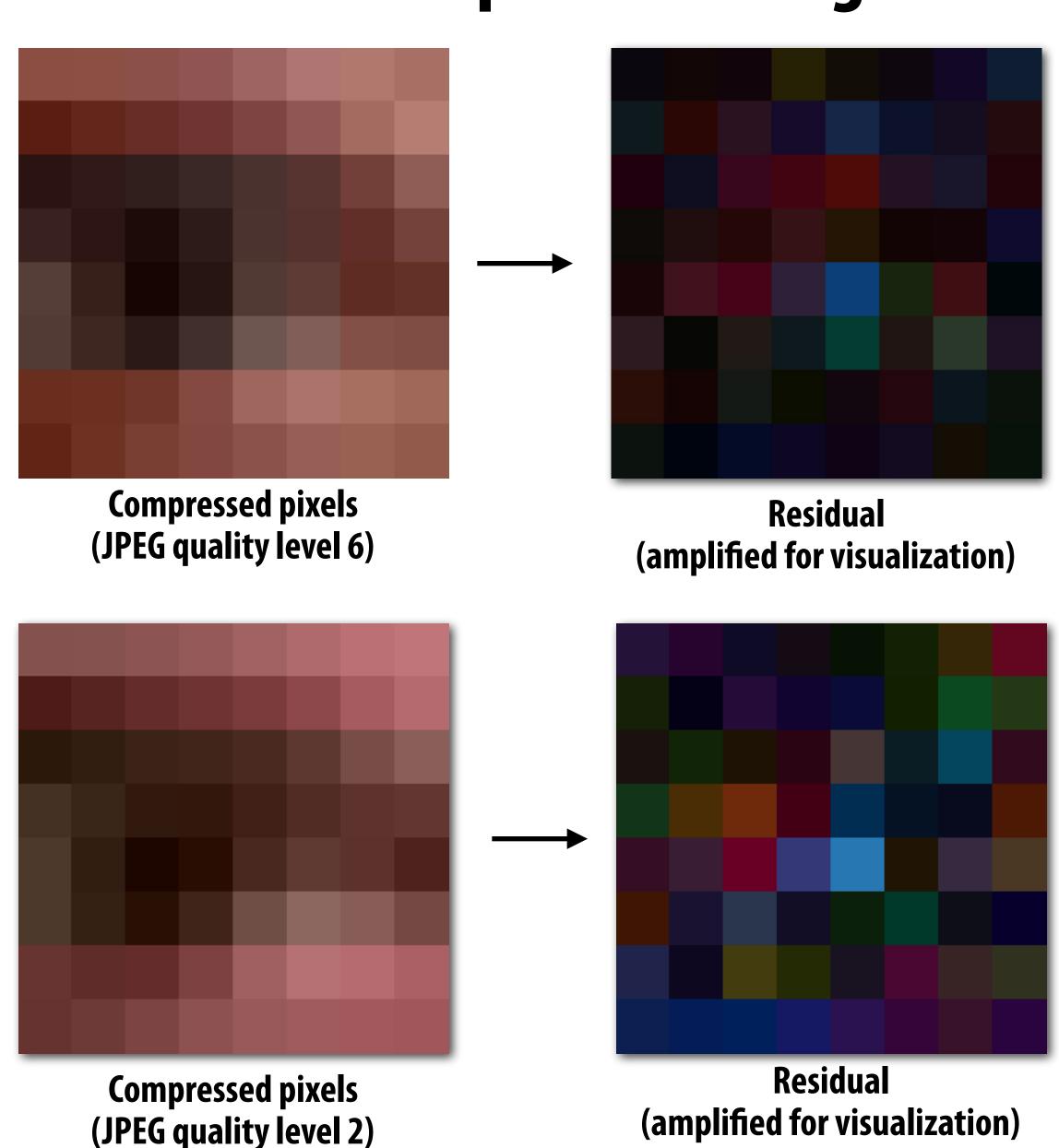
Residual: difference between compressed image and

original image



Original pixels

In video compression schemes, the residual image is compressed using techniques like those described in the earlier part of this lecture.



Example video

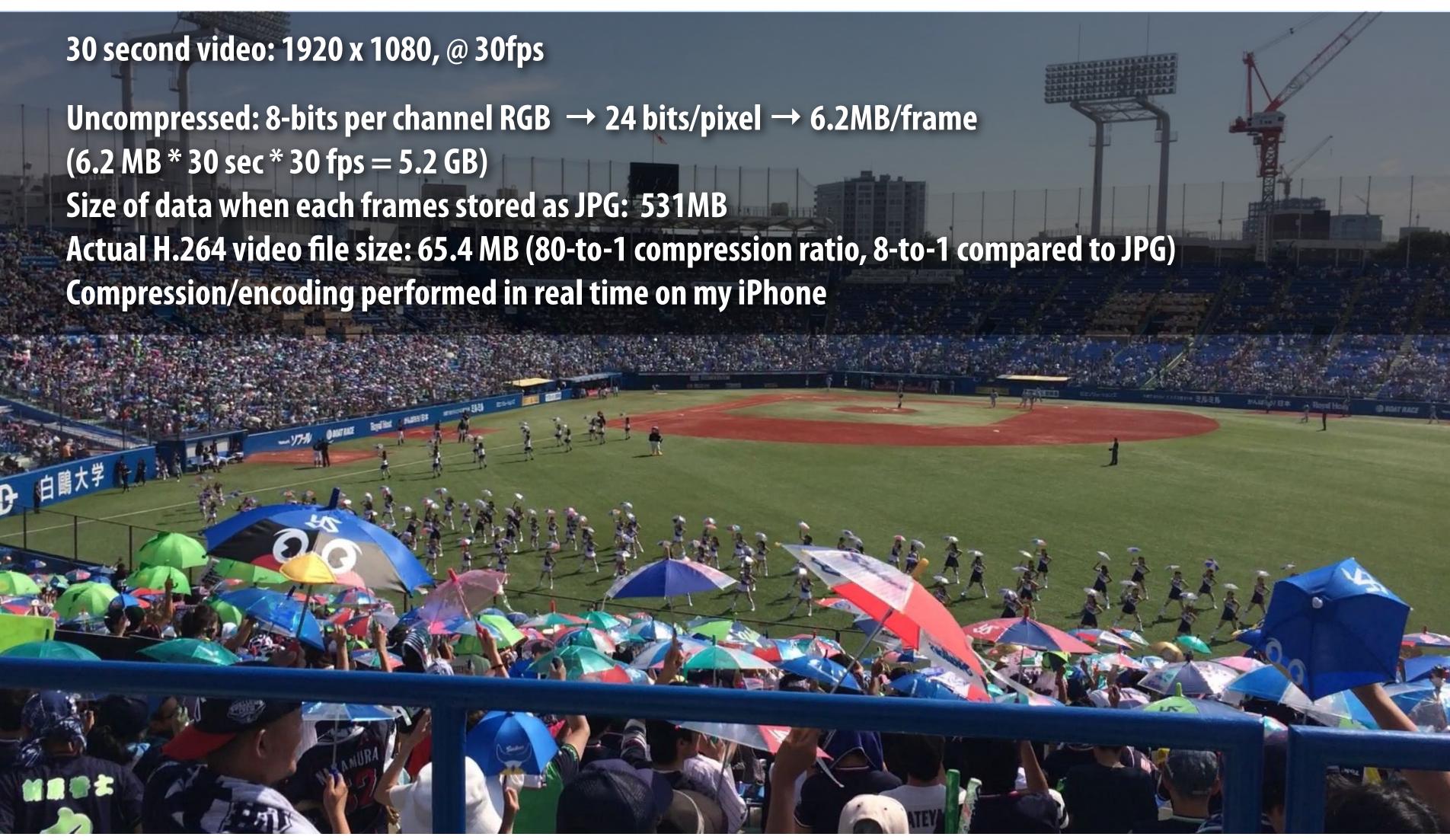


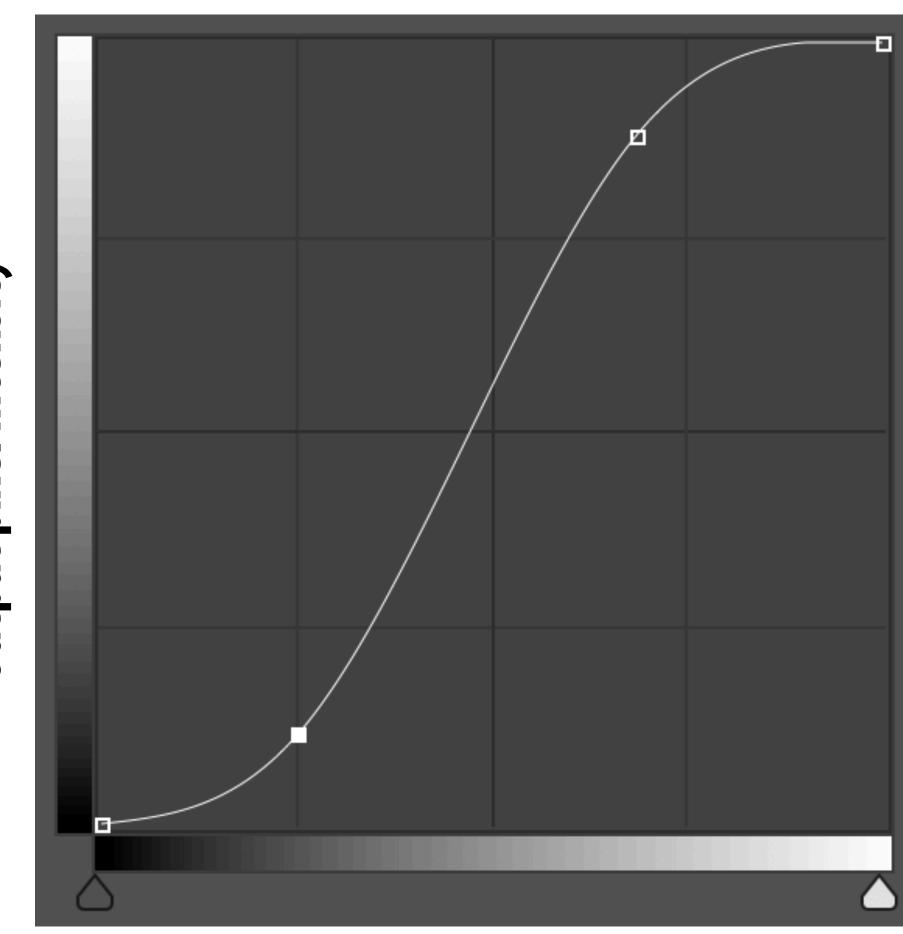
Image processing basics

Increase contrast

Increasing contrast with "S curve"

Per-pixel operation: output(x,y) = f(input(x,y))

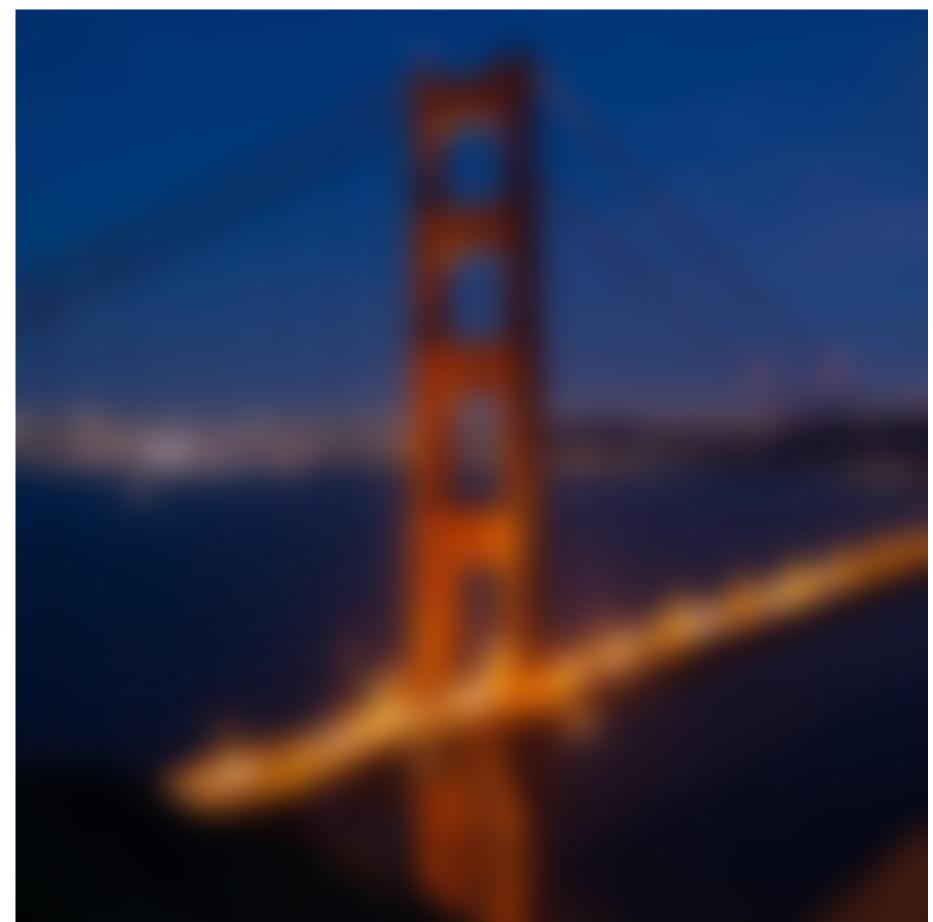
Output pixel intensity



Input pixel intensity

Image Invert:

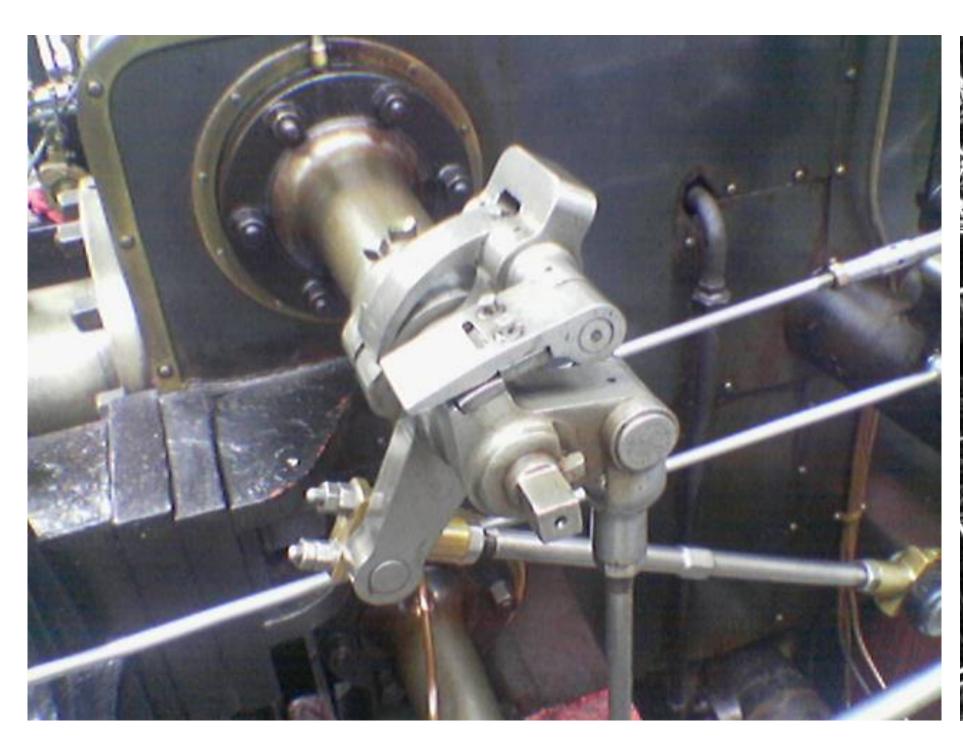
out(x,y) = 1 - in(x,y)

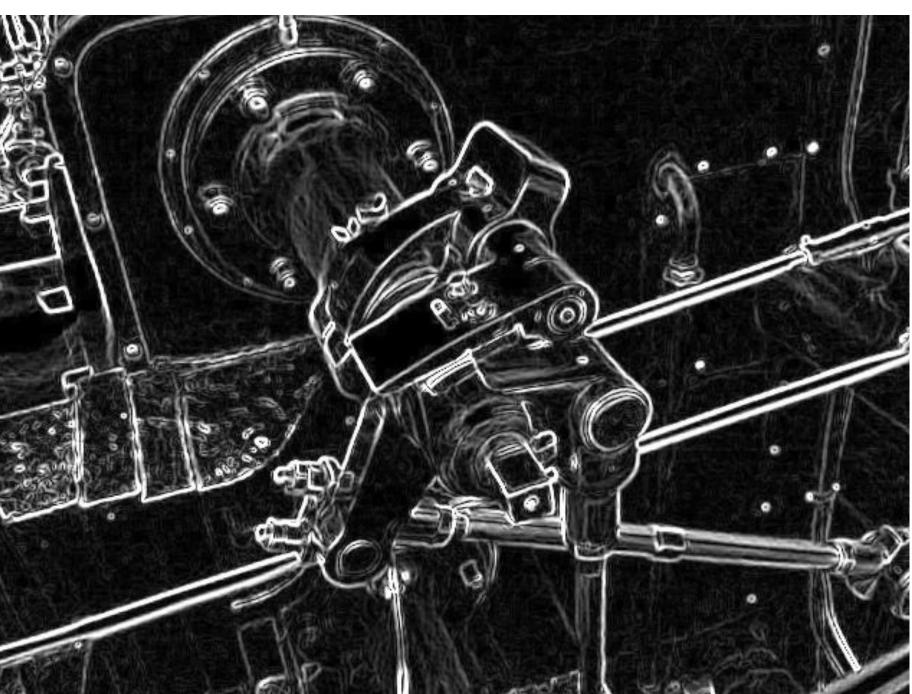


Blur

Sharpen

Edge detection

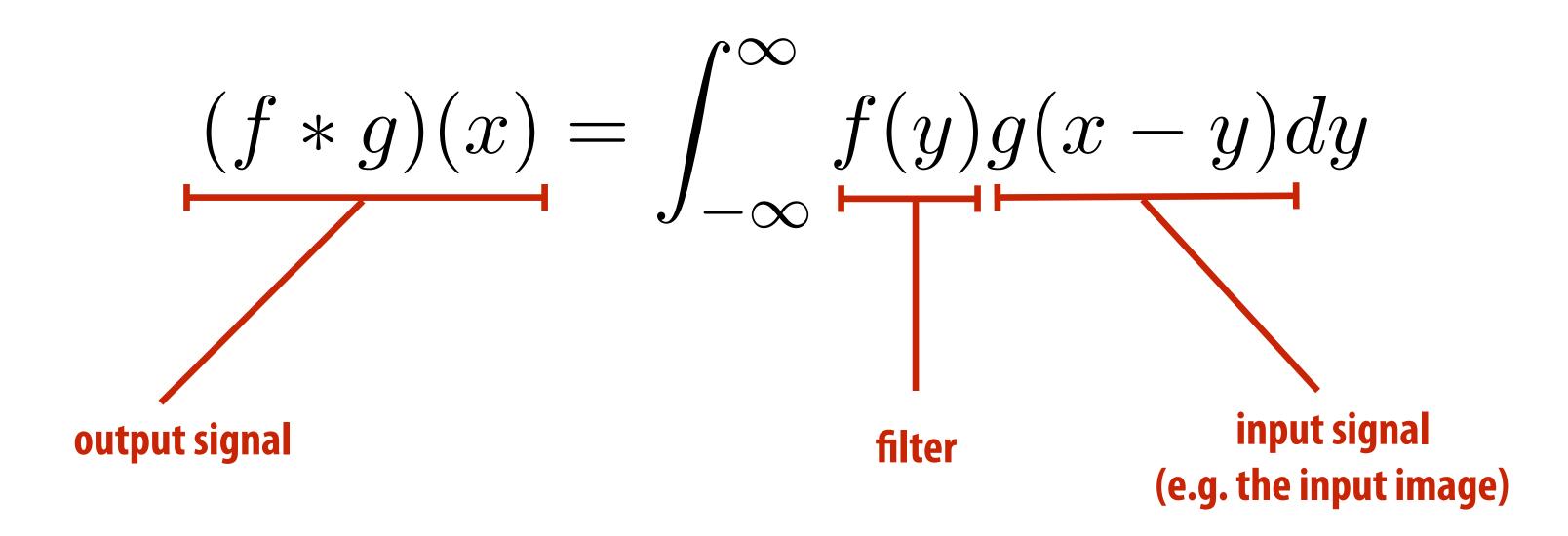




A "smarter" blur (doesn't blur over edges)



Review: convolution



It may be helpful to consider the effect of convolution with the simple unit-area "box" function:

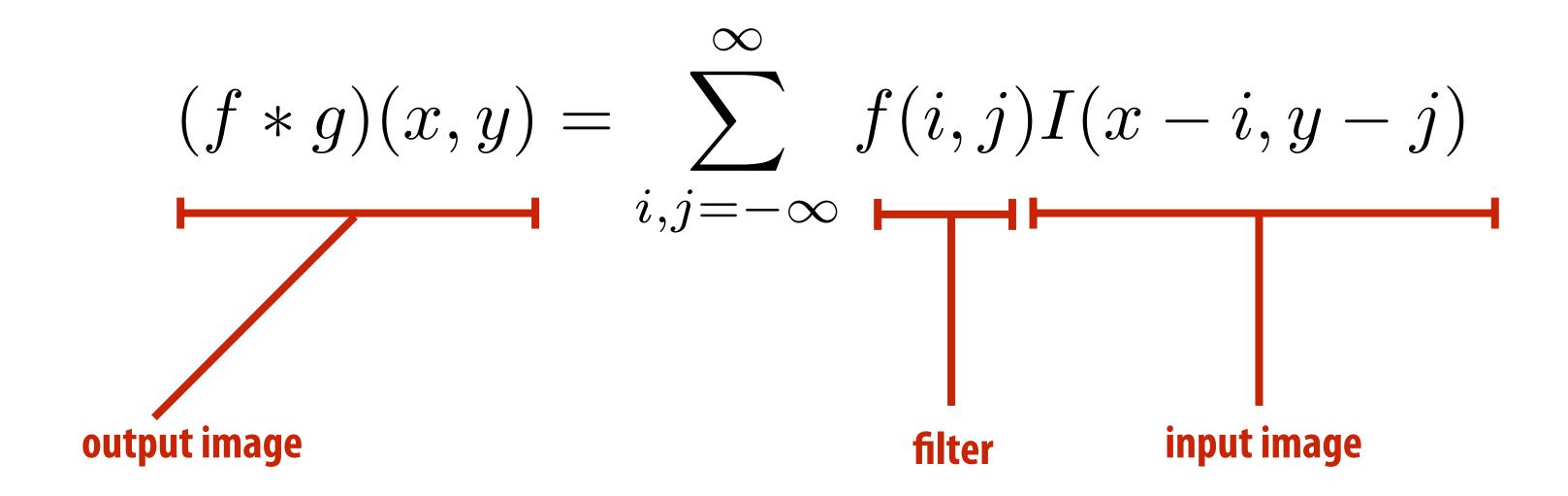
$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$

$$(f * g)(x) = \int_{-0.5}^{0.5} g(x - y) dy$$

f*g is a "blurred" version of g where the output at x is the average value of the input between x-0.5 to x+0.5

0.5

Discrete 2D convolution



Consider f(i,j) that is nonzero only when: $-1 \leq i,j \leq 1$

Then:

$$(f * I)(x,y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i,y-j)$$

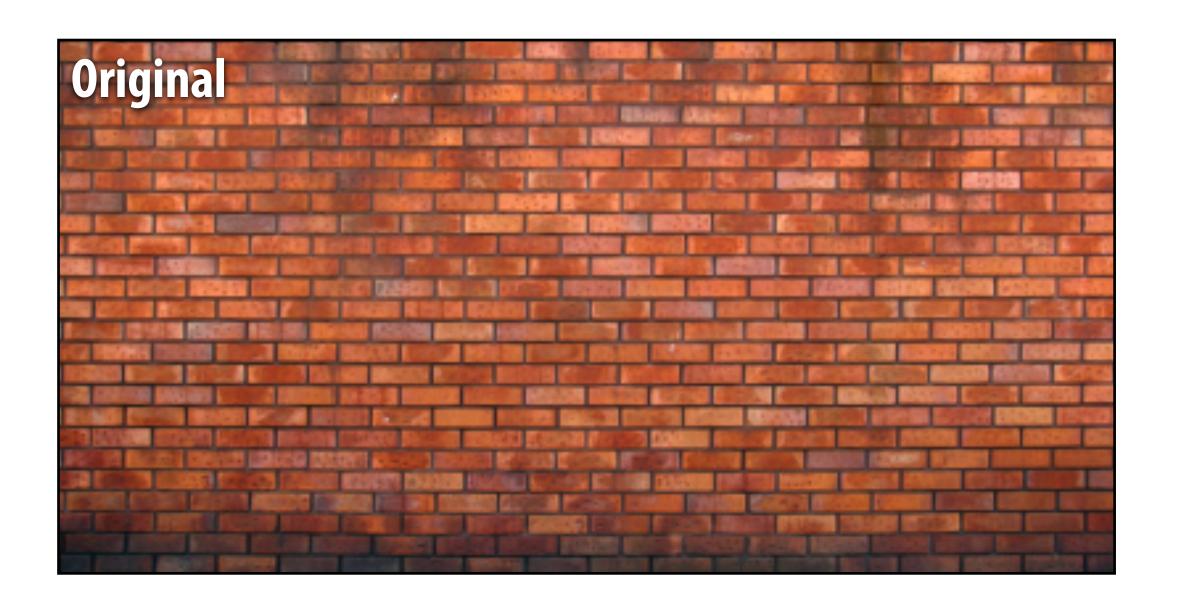
And we can represent f(i,j) as a 3x3 matrix of values where:

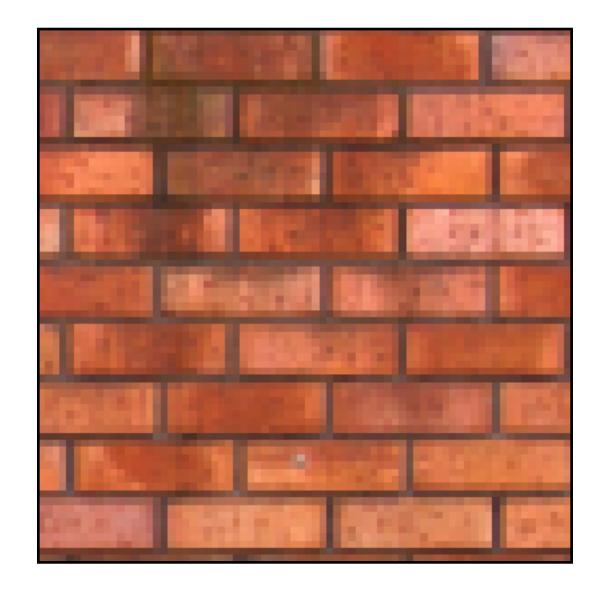
$$f(i,j) = \mathbf{F}_{i,j}$$
 (often called: "filter weights", "filter kernel")

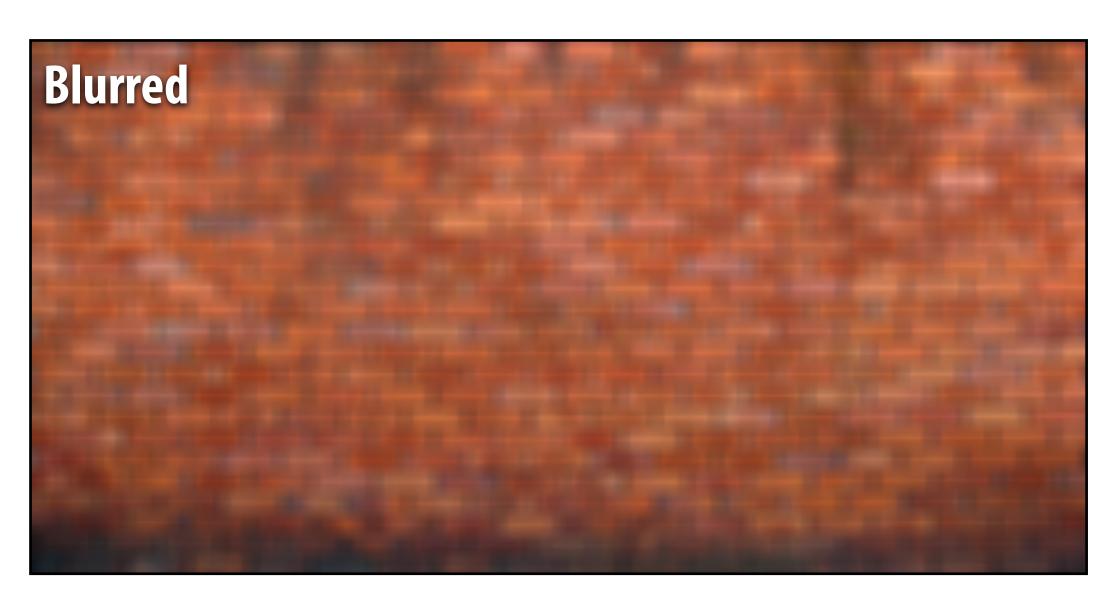
Simple 3x3 box blur

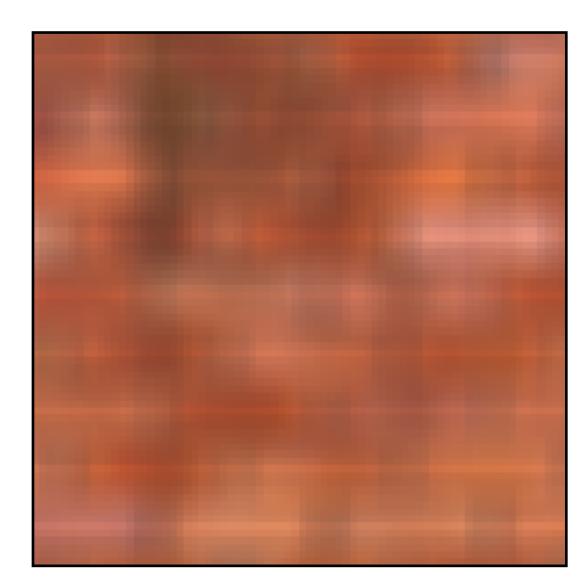
```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
                                                                                                                                                                                                                                                                                      For now: ignore boundary pixels and
                                                                                                                                                                                                                                                                                      assume output image is smaller than
                                                                                                                                                                                                                                                                                      input (makes convolution loop bounds
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./
                                                                                                                                                                                                                                                                                      much simpler to write)
                                                                                                         1./9, 1./9, 1./9,
                                                                                                         1./9, 1./9, 1./9};
for (int j=0; j<HEIGHT; j++) {</pre>
                for (int i=0; i<WIDTH; i++) {</pre>
                                 float tmp = 0.f;
                                 for (int jj=0; jj<3; jj++)
                                                 for (int ii=0; ii<3; ii++)
                                                                  tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
                                output[j*WIDTH + i] = tmp;
```

7x7 box blur









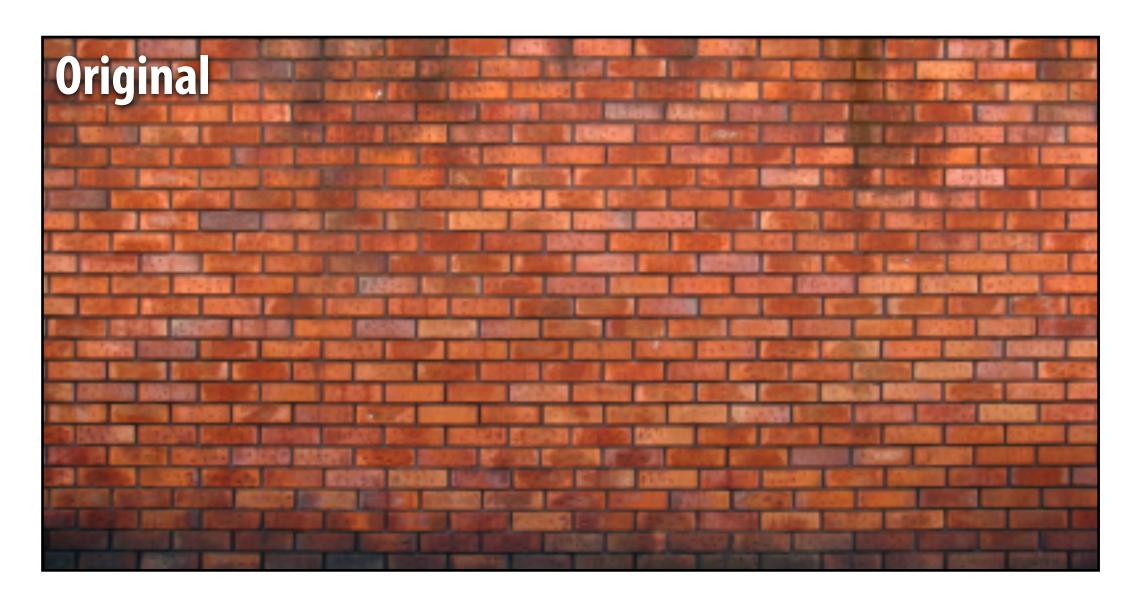
Gaussian blur

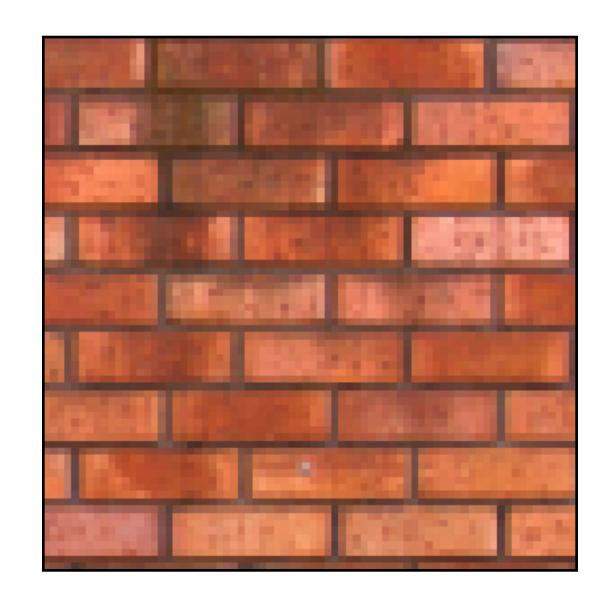
Obtain filter coefficients by sampling 2D Gaussian function

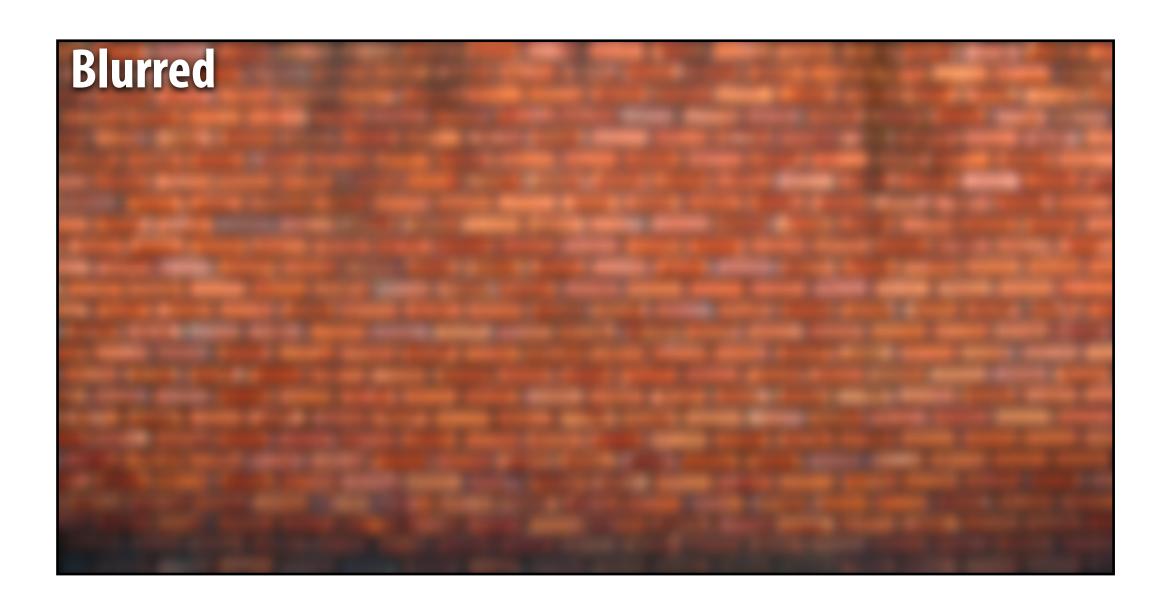
$$f(i,j) = \frac{1}{2\pi\sigma^2}e^{-\frac{i^2+j^2}{2\sigma^2}}$$

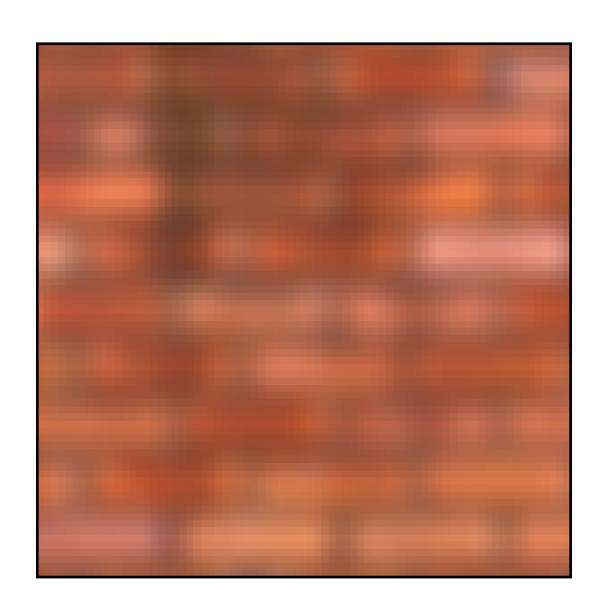
- Produces weighted sum of neighboring pixels (contribution falls off with distance)
 - In practice: truncate filter beyond certain distance for efficiency

7x7 gaussian blur







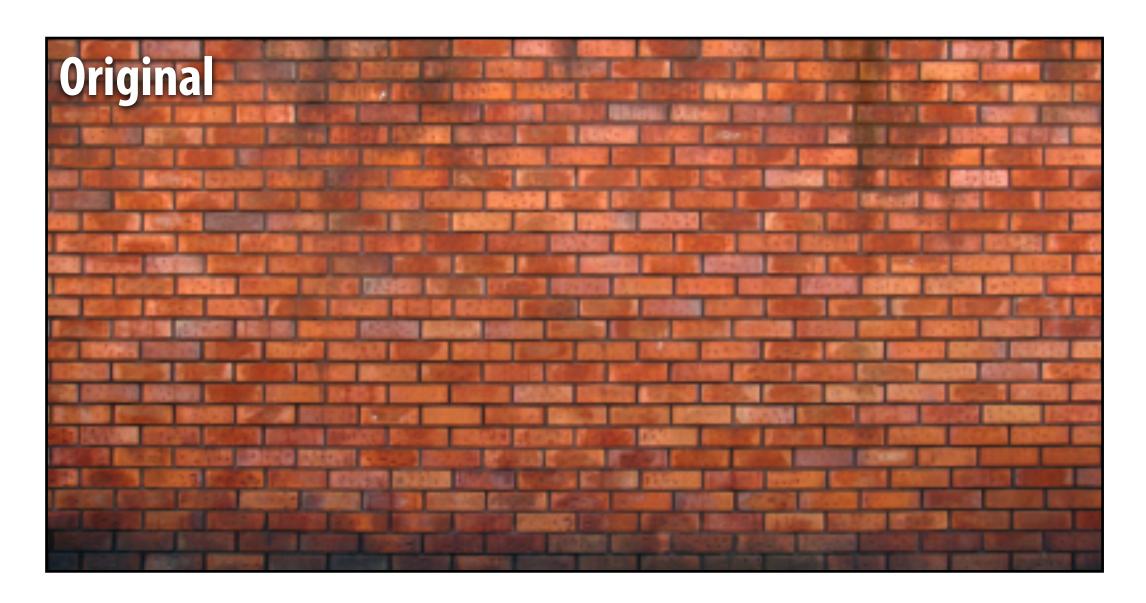


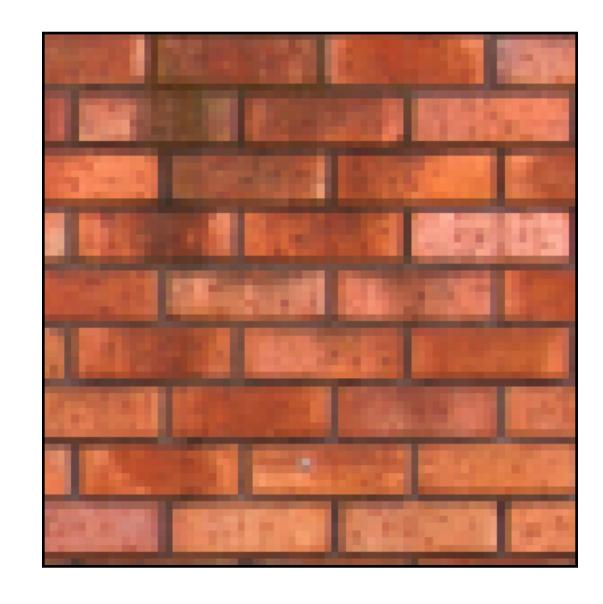
What does convolution with this filter do?

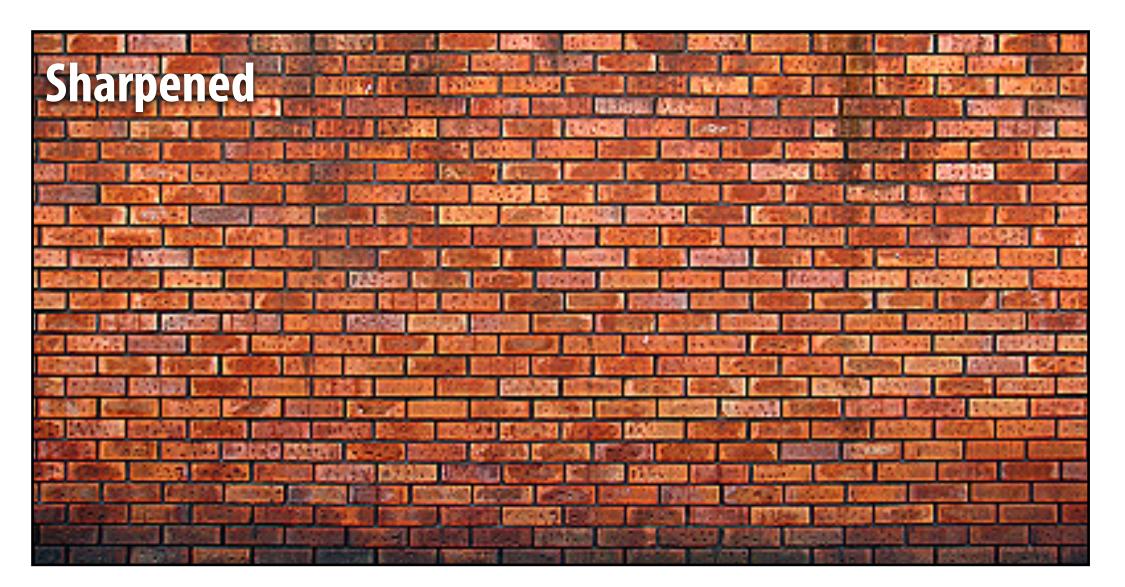
$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

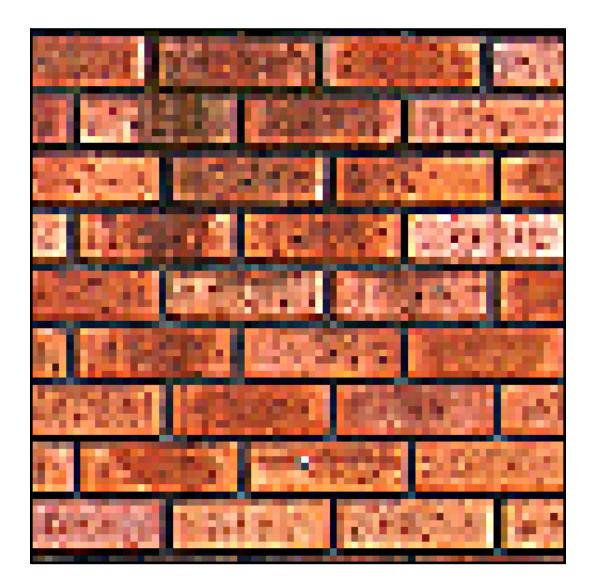
Sharpens image!

3x3 sharpen filter



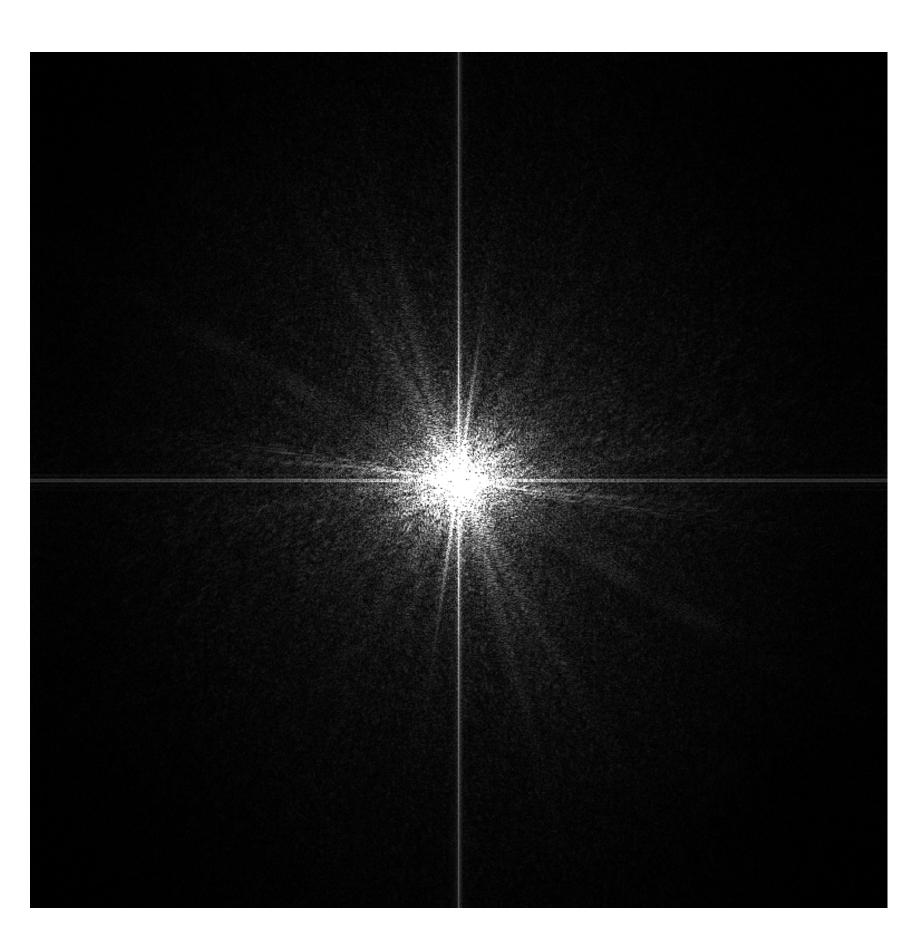






Recall: blurring is removing high frequency content

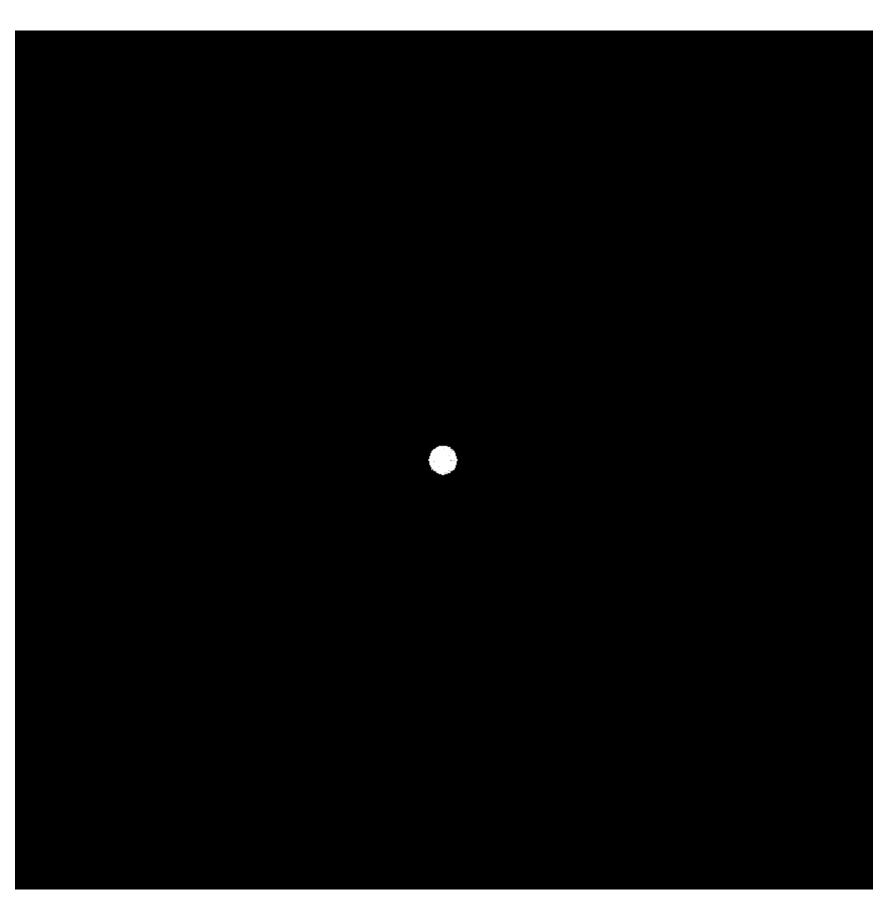
Spatial domain result



Spectrum

Recall: blurring is removing high frequency content

Spatial domain result

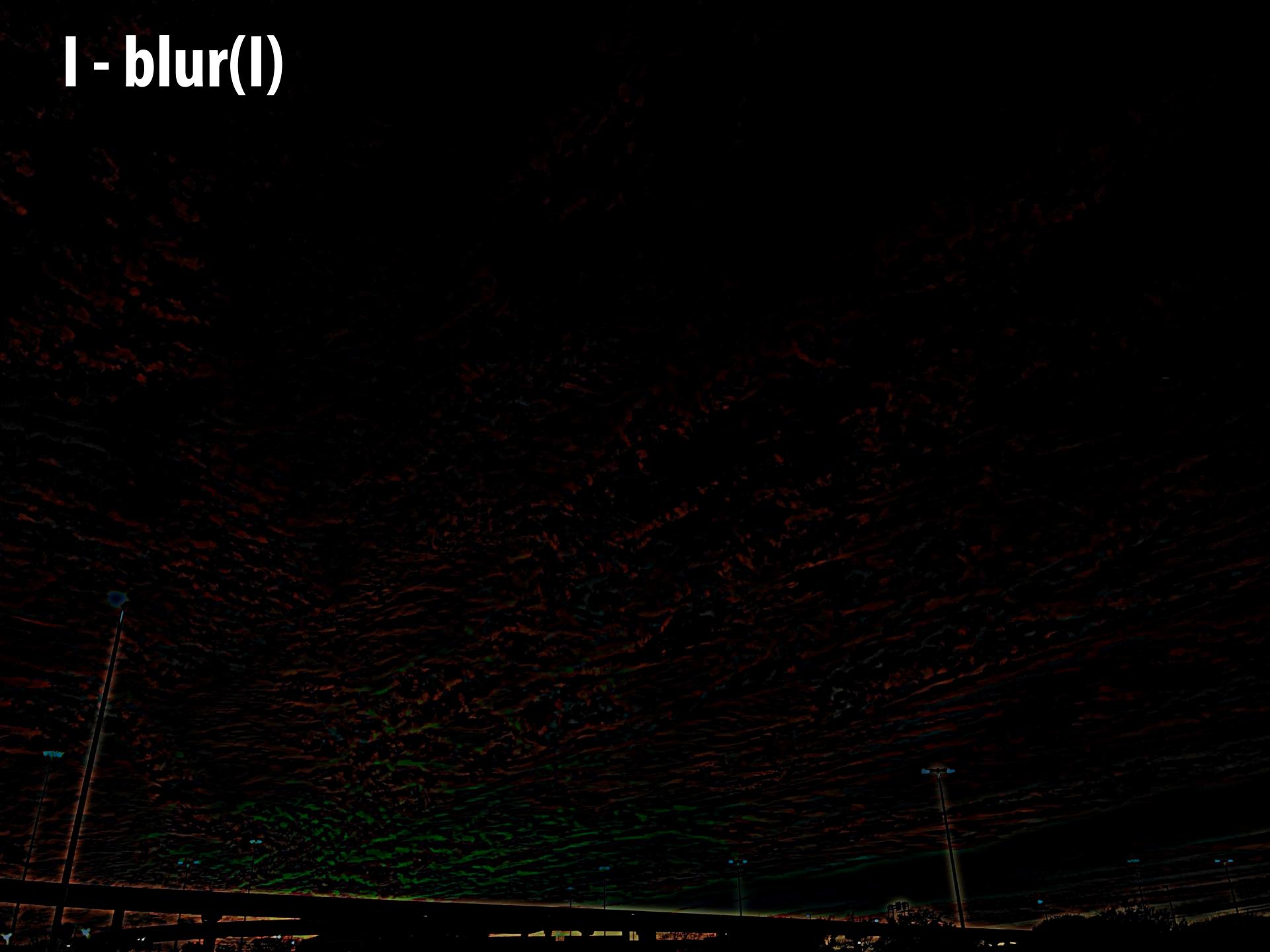


Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Sharpening is adding high frequencies

- Let I be the original image
- High frequencies in image I = I blur(I)
- Sharpened image = I + (I-blur(I))

"Add high frequency content"



What does convolution with these filters do?

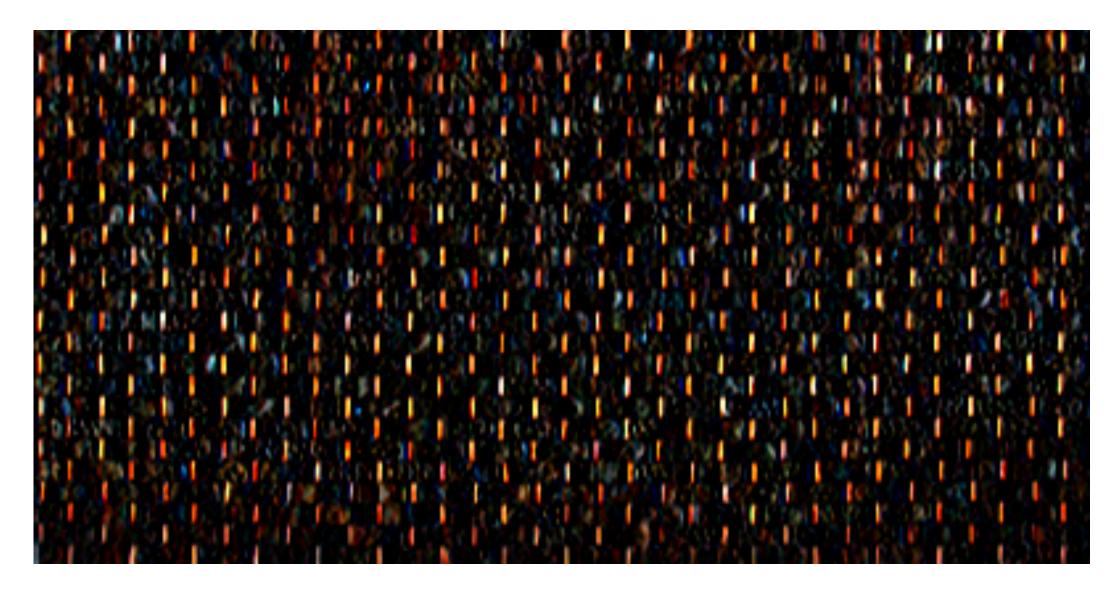
$$egin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \ \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

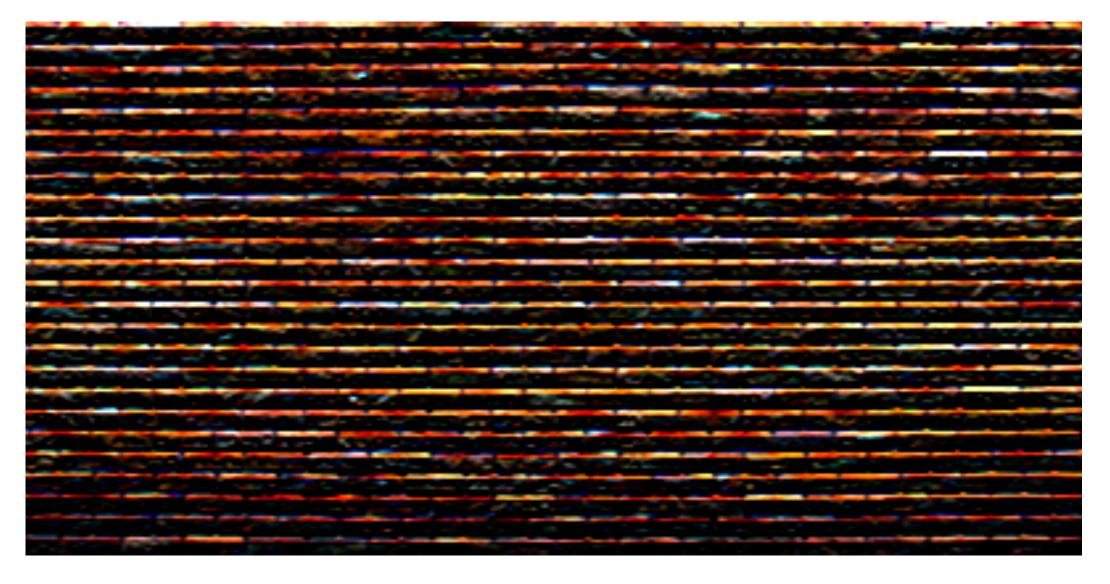
Extracts horizontal gradients

Extracts vertical gradients

Gradient detection filters



Horizontal gradients



Vertical gradients

Note: you can think of a filter as a "detector" of a pattern, and the magnitude of a pixel in the output image as the "response" of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)

Sobel edge detection

Compute gradient response images

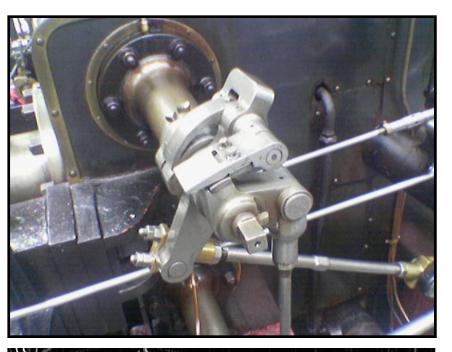
$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I$$

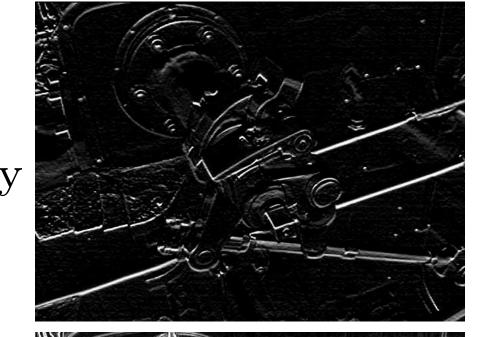
$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$

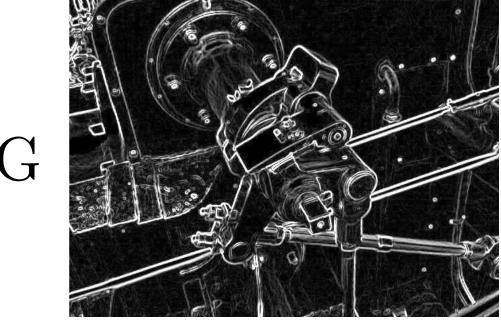
Find pixels with large gradients

$$G = \sqrt{G_x^2 + G_y^2}$$

Pixel-wise operation on images







Cost of convolution with N x N filter?

```
float input[(WIDTH+2) * (HEIGHT+2)];
                                                                                                                                                                                                                            In this 3x3 box blur example:
float output[WIDTH * HEIGHT];
                                                                                                                                                                                                                            Total work per image = 9 x WIDTH x HEIGHT
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./
                                                                                                                                                                                                                           For N x N filter: N<sup>2</sup> x WIDTH x HEIGHT
                                                                                                         1./9, 1./9, 1./9,
                                                                                                         1./9, 1./9, 1./9};
for (int j=0; j<HEIGHT; j++) {</pre>
                for (int i=0; i<WIDTH; i++) {
                                 float tmp = 0.f;
                                 for (int jj=0; jj<3; jj++)
                                                 for (int ii=0; ii<3; ii++)
                                                                   tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
                                 output[j*WIDTH + i] = tmp;
```

Separable filter

A filter is separable if can be written as the outer product of two other filters. Example: a 2D box blur

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \frac{1}{3} [1 \quad 1 \quad 1]$$

 Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as product of 1D filters (they are separable!)

Key property: 2D convolution with separable filter can be written as two 1D convolutions!

Implementation of 2D box blur via two 1D convolutions

```
int WIDTH = 1024
int HEIGHT = 1024;
                                           Total work per image for NxN filter:
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
                                           2N x WIDTH x HEIGHT
float output[WIDTH * HEIGHT];
float weights[] = \{1./3, 1./3, 1./3\};
for (int j=0; j<(HEIGHT+2); j++)
  for (int i=0; i<WIDTH; i++) {
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

Original

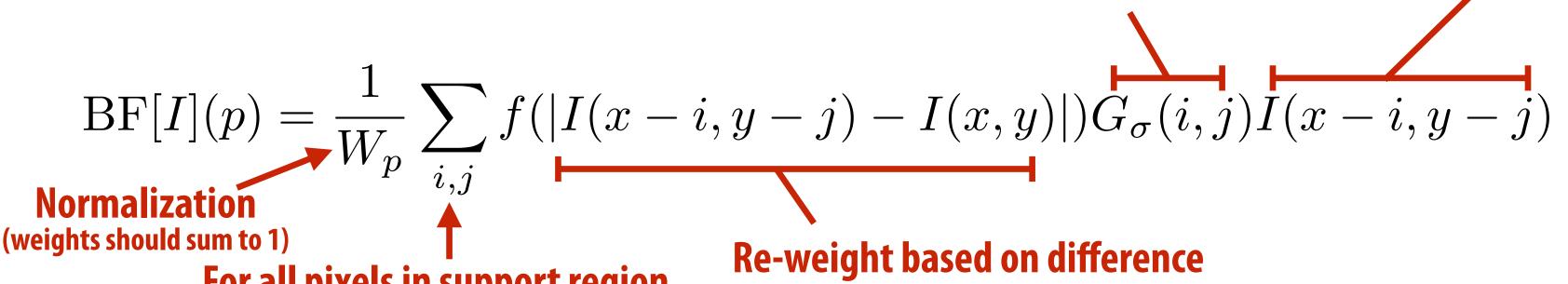
After bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

Original

After bilateral filter

Example use of bilateral filter: removing noise while preserving image edges



Gaussian blur kernel

in input image pixel values

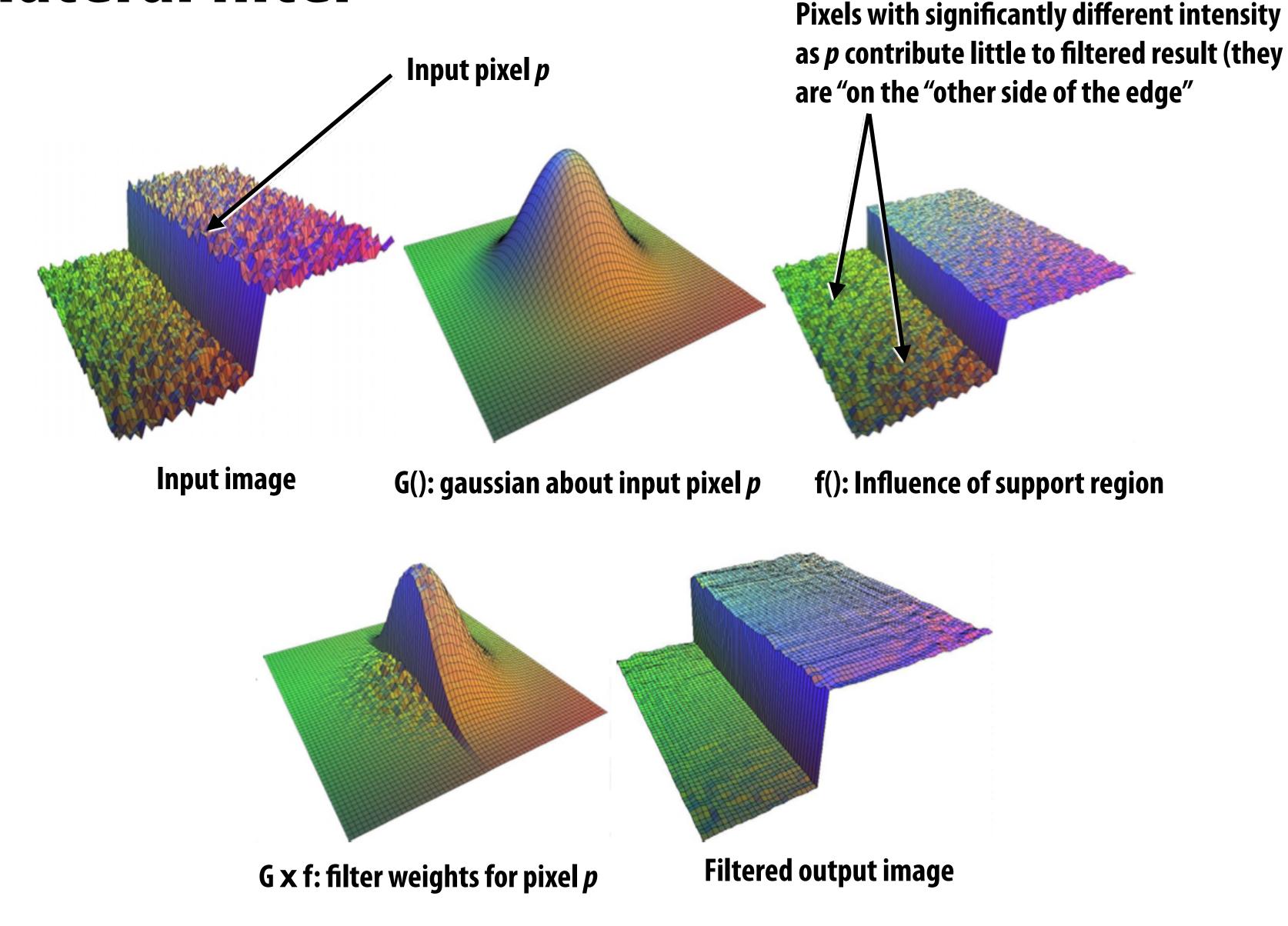
For all pixels in support region of Gaussian kernel

 $\frac{1}{W_p} = \sum_{i \in S} f(|I(x - i, y - j) - I(x, y)|)G_{\sigma}(i, j)$

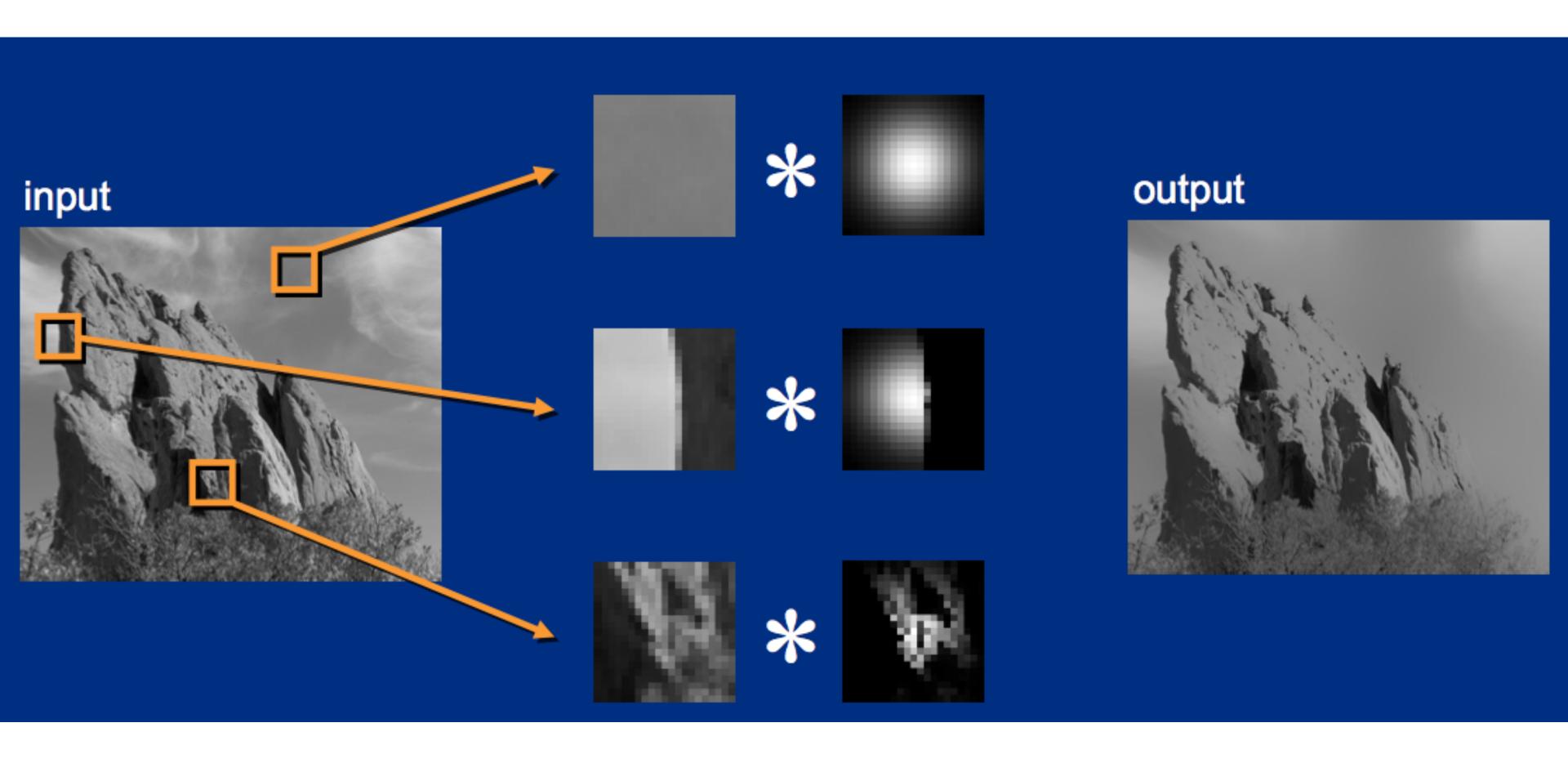
- The bilateral filter is an "edge preserving" filter: down-weight contribution of pixels on the "other side" of strong edges. f(x) defines what "strong edge means"
- Spatial distance weight term f(x) could itself be a gaussian
 - Or very simple: f(x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of <u>spatial distance</u> and input image <u>pixel intensity difference</u>. (the filter's weights depend on input image content)



Bilateral filter: kernel depends on image content



Summary

Last two lectures: representing images

- Choice of color space (different representations of color)
- Store values in perceptual space (non-linear in energy)
- JPEG image compression (tolerate loss due to approximate representation of high frequency components)

Basic image processing operations

- Per-pixel operations out(x,y) = f(in(x,y)) (e.g., contrast enhancement)
- Image filtering via convolution (e.g., blur, sharpen, simple edgedetection)
- Non-linear, data-dependent filters (median filter, avoid blurring over strong edges, etc.)