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Challenge: hand animate this clothing!
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Dynamical description of motion

“Dynamics is concerned with the study of forces and their effect 
on motion, as opposed to kinematics, which studies the motion 
of objects without reference to its causes.”

—Sir Wiki Pedia, present

“A change in motion is proportional to the motive force 
impressed and takes place along the straight line in which that 
force is impressed.”

—Sir Isaac Newton, 1687

(Q: Is keyframe interpolation dynamic, or kinematic?)
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Newton’s 2nd law

force

mass

acceleration
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Physically based animation
Generate motion of objects using numerical simulation 
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Generalized coordinates
Often describing systems with many, many moving pieces 
E.g., a collection of billiard balls, each with position xi 

Collect them all into a single vector of generalized coordinates:  

Can think of q as a single point moving along a trajectory in Rn 
This way of thinking naturally maps to the way we actually solve 
equations on a computer: all variables are often “stacked” into a 
big long vector and handed to a solver
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Generalized velocity
Generalized velocity: it’s the time derivative of the 
generalized coordinates!

All of life (and physics) is just 
traveling along a curve...
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Ordinary differential equations
Many dynamical systems can be described via an ordinary 
differential equation (ODE) in generalized coordinates:

velocity functionchange in configuration over time

ODE doesn’t have to describe mechanical phenomenon, e.g.,

“rate of growth is proportional to value”

Solution: 
Describes exponential decay (a < 1), or really great stock (a > 1) 
“Ordinary” means “involves derivatives in time but not space” 
We’ll leave talking about spatial derivatives (PDEs) to CS348C
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Dynamics via ODEs
Another key example: Newton’s 2nd law!

“Second order” ODE since we take two time derivatives 

Can also write as a system of two first order ODEs, by 
introducing new “dummy” variable for velocity:

Splitting things up this way will make it easier to talk about 
solving these equations numerically
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Simple example: throwing a rock
Consider a rock* of mass m tossed under force of gravity g 
Easy to write dynamical equations, since only force is gravity:

*Yes, this rock is spherical and has uniform density.

or

Solution:

(What do we need a computer for?!)
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Force due to gravity
Gravity at earth’s surface due to earth 

- g is gravitational acceleration,  
g = –9.8m/s2

Fg = �mg

g = (0, 0,�9.8)m/s2
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Slightly harder example: pendulum
Mass on end of a bar, swinging under gravity 
What are the equations of motion? 
Same as “rock” problem, but constrained 
Could use a “force diagram” 
- You probably did this for many hours in 

high school/college 
- Let’s do something different…
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Lagrangian mechanics
Beautifully simple recipe: 
1. Write down kinetic energy 
2. Write down potential energy 
3. Write down Lagrangian 
4. Dynamics of system given by Euler-Lagrange equation

Why is this useful? 
- often easier to come up with (scalar) energies than forces 
- very general, works in any kind of generalized coordinates 
- helps develop nice class of numerical integrators (symplectic)

Great reference: Sussman & Wisdom, “Structure and Interpretation of Classical Mechanics”

Joe Lagrange

becomes (generalized) 
“MASS TIMES ACCELERATION” becomes (generalized) “FORCE”
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Lagrangian mechanics - example
Generalized coordinates for pendulum? 

Kinetic energy (mass m)? 

Potential energy? 

Euler-Lagrange equations: (from here, just “plug and chug”—even a computer could do it!)

just one coordinate: 
angle with the vertical direction
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Solving the pendulum
Great, now we have a nice simple equation for the pendulum:

For small angles (e.g., clock pendulum) can approximate as

“harmonic oscillator”

In general, there is no closed form solution! 
Hence, we must use a numerical approximation 
...And this was (almost) the simplest system we can think of! 
(What if we want to animate something more interesting?)
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Not-so-simple example: double pendulum
Blue ball swings from fixed point; green ball swings from blue one 
Simple system... not-so-simple motion! 
Chaotic: perturb input, wild changes to output 
Must again use numerical approximation
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Not-so-simple example: n-body problem
Consider the Earth, moon, and sun—where do they go? 
Solution is trivial for two bodies (e.g., assume one is fixed) 
As soon as n ≥ 3, again get chaotic solutions (no closed form) 
What if we want to simulate entire galaxies?

Credit: Governato et al / NASA
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For animation, we want to simulate 
these kinds of phenomena!
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Example: flocking
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Simulated flocking as an ODE
Each bird is a particle 
Subject to very simple forces: 

- attraction to center of neighbors 

- repulsion from individual neighbors 

- alignment toward average trajectory of neighbors 
Solve large system of ODEs (numerically!) 
Emergent complex behavior (also seen in fish, bees, ...)

attraction repulsion alignment
Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

http://www.red3d.com/cwr/boids/
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Particle systems
Model phenomena as large collection of particles 
Each particle has a behavior described by (physical or non-physical) forces 
Extremely common in graphics/games 
- easy to understand 
- simple equation for each particle 
- easy to scale up/down

Credit: LMHPoly  https://www.youtube.com/watch?v=MYU1vBcUkfw

https://www.youtube.com/watch?v=MYU1vBcUkfw
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Example: crowds

Where are the bottlenecks in a building plan?
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Example: crowds + “rock” dynamics
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Example: particle-based fluids

Macklin and Müller, Position Based Fluids 

(Fluid: particles or continuum?)
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Example: granular materials

Bell et al, “Particle-Based Simulation of Granular Materials”
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Example: molecular dynamics

(model of melting ice crystal)
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Gravitational attraction
Newton’s universal law of gravitation 

- Gravitational pull between particles

Fg = G
m1m2

d2

G = 6.67428⇥ 10�11 Nm2kg�2

d

m1 m2
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Example: cosmological simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)
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Example: mass-spring system
Connect particles x1, x2 by a spring of length L0 
Potential energy is given by

stiffness current length

rest length

Connect up many springs to describe interesting phenomena 
Extremely common in graphics/games 
- easy to understand 
- simple equation for each particle

=
1

2
k(|x1 � x2|� L0)

2
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Non-zero length spring
Spring with non-zero rest length 

- Below: direct specification of force 
on x1 due to spring)

Problem: oscillates forever… 

How might we add internal dampening?

fx1 = k(|x2 � x1|� L0)
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Example: mass-spring rope

Credit: Elizabeth Labelle, https://youtu.be/Co8enp8CH34

https://youtu.be/Co8enp8CH34
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Example: hair
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Example: mass-spring system
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Example structures from springs
Sheets 

Blocks
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Structures from springs
Behavior is determined by structure linkages

This structure will not resist shearing

It will also not resist out-of-plane 
bending.
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Structures from springs
Behavior is determined by structure linkages

This structure will resist shearing 
but has anisotropic bias

It will not resist out-of-plane bending.
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Structures from springs
Behavior is determined by structure linkages

This structure will resist shearing.  
Less directional bias.

But will not resist out-of-plane 
bending...
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Structures from springs

This structure not resist shearing. 
Less directional bias.

This structure will resist out-of-plane 
bending. 

In general, red springs should be weaker

Behavior is determined by structure linkages
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Example: mass spring + character anim
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How do we solve these 
systems numerically?
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Numerical integration
Key idea: replace derivatives with differences 
In ODE, only need to worry about derivative in time 
Replace time-continuous function q(t) with samples qk in time

“time step,” i.e., interval of 
time between qk and qk+1

new configuration 
(unknown—want to solve for this!) current configuration 

(known)

Wait... where do we 
evaluate the velocity 
function?  At the new 
or old configuration?
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Forward Euler
Simplest scheme: evaluate velocity at current configuration 
New configuration can then be written explicitly in terms of known data:

new configuration current configuration velocity at current time

Very intuitive: walk a tiny bit in the direction of the velocity 
Problems: poor accuracy and not very stable
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Euler’s method - error
With numerical integration, errors accumulate

Example:

Euler's Method

x(t + Δt) = x(t) + Δt f(x,t)

• Simplest numerical 
solution method

• Discrete time steps

• Bigger steps, bigger 
errors.

Figure 3: Euler’s method: instead of the true integral curve, the approximate solution follows a

polygonal path, obtained by evaluating the derivative at the beginning of each leg. Here we show

how the accuracy of the solution degrades as the size of the time step increases.

In contrast, we will be concerned exclusively with numerical solutions, in which we take dis-

crete time steps starting with the initial value x(t0). To take a step, we use the derivative function

f to calculate an approximate change in x, !x, over a time interval !t , then increment x by !x to

obtain the new value. In calculating a numerical solution, the derivative function f is regarded as

a black box: we provide numerical values for x and t , receiving in return a numerical value for ẋ.

Numerical methods operate by performing one or more of these derivative evaluations at each time

step.

2.1 Euler’s Method

The simplest numerical method is called Euler’s method. Let our initial value for x be denoted by

x0 = x(t0) and our estimate of x at a later time t0 + h by x(t0 + h), where h is a stepsize parameter.

Euler’s method simply computes x(t0 + h) by taking a step in the derivative direction,

x(t0 + h) = x0 + hẋ(t0).

You can use the mental picture of a 2D vector field to visualize Euler’s method. Instead of the

real integral curve, p follows a polygonal path, each leg of which is determined by evaluating the

vector f at the beginning, and scaling by h. See figure 3.

Though simple, Euler’s method is not accurate. Consider the case of a 2D function f whose

integral curves are concentric circles. A point p governed by f is supposed to orbit forever on

whichever circle it started on. Instead, with each Euler step, p will move on a straight line to a circle

of larger radius, so that its path will follow an outward spiral. Shrinking the stepsize will slow the

rate of this outward drift, but never eliminate it.

SIGGRAPH ’97 COURSE NOTES B3 PHYSICALLY BASEDMODELING

Witkin and Baraff

Solution path
Euler estimate with small time step
Euler estimate with large time step

qk+1 = qk + ⌧ q̇k
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Problem: instability

Very intuitive: walk a tiny bit in the direction of the velocity 
Unfortunately, not very stable, consider a spring…

When mass is moving inward: 
• Force is decreasing 
• Each time-step overestimates the velocity change 

(increases energy) 
When mass gets to origin 

• Has velocity that is too high, now traveling outward 
When mass is moving outward 

• Force is increasing 
• Each time-step underestimates the velocity change 

(increases energy) 
With each motion cycle, mass gains energy exponentially

Two Problems

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
your choice.

Instability: off to
Neptune!

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals

outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking

the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.

Below: too large a stepsize can make Euler’s method diverge.

Moreover, Euler’s method can be unstable. Consider a 1D function f = −kx , which should
make the point p decay exponentially to zero. For sufficiently small step sizes we get reasonable

behavior, but when h > 1/k, we have |!x | > |x |, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all

their time performing derivative evaluations, so the computational cost per step is determined by

the number of evaluations per step. Though Euler’s method only requires one evaluation per step,

the real efficiency of a method depends on the size of the steps it lets you take—while preserving

accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-

quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because

their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at

the error that the method produces. The key to understanding what’s going on is the Taylor series:

Assuming x(t) is smooth, we can express its value at the end of the step as an infinite sum involving

the the value and derivatives at the beginning:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
x˙̇ ˙(t0) + . . . + hn

n!

∂nx

∂tn
+ . . .

As you can see, we get the Euler update formula by truncating the series, discarding all but the

first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference

SIGGRAPH ’97 COURSE NOTES B4 PHYSICALLY BASEDMODELING

qk+1 = qk + ⌧ q̇k
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Another example

starts out slow...

...gradually moves faster & faster!

Where did all this 
extra energy come 

from?

Consider a pendulum…
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Forward Euler - stability analysis
Let’s consider behavior of forward Euler for simple linear ODE:

Forward Euler approximation is

Which means after n steps, we have

Importantly: u should decay (exact solution is u(t)=e - at)

Decays only if |1-τa| < 1, or equivalently, if τ < 2/a 
In practice: need very small time steps if a is large (“stiff system”)



starts out slow...

...and eventually stops moving completely.
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Backward Euler
Let’s try something else: evaluate velocity at next configuration 
New configuration is then implicit, and we must solve for it:

new configuration current configuration velocity at next time

Harder to solve, since in general f can be very nonlinear! 
Pendulum is now stable... perhaps too stable?

Where did all the 
energy go?
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Backward Euler - stability analysis
Again consider a simple linear ODE:

Backward Euler approximation is

Which means after n steps, we have

Remember: u should decay (exact solution is u(t)=e - at)

Decays if |1+τa| > 1, which is always true! 
⇒Backward Euler is unconditionally stable for linear ODEs



starts out slow...

...and keeps on ticking.
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Symplectic Euler
Backward Euler was stable, but we also saw (empirically) that it 
exhibits numerical damping (damping not found in original eqn.) 
Nice alternative is symplectic Euler 
- update velocity using current configuration 

- update configuration using new velocity
Easy to implement; used often in practice  
Pendulum now conserves energy almost exactly, forever:

(Proof? The analysis 
is not quite as easy...)
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Numerical integrators
Barely scratched the surface 
Many different integrators 
Why? Because many notions of “good”: 

- stability 

- accuracy 

- consistency/convergence 

- conservation, symmetry, ... 

- computational efficiency (!) 
No one “best” integrator—pick the right tool for the job! 
Could do (at least) an entire course on time integration... 
Great book: Hairer, Lubich, Wanner
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Not covered today: contact mechanics

Smith et al, “Reflections on Simultaneous Impact”
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Not covered today: contact mechanics

Bridson et al. 2002
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Yarn-level cloth simulation

Kaldor et al. 2010
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Material fracture

Pfaff et al. 2014
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Summary
Mathematical modeling of dynamical systems and (usually) 
solution by numerical integration 
Particle systems 

- Flexible force modeling, e.g. spring-mass sytems, 
gravitational attraction, fluids, flocking behavior 

- Newtonian equations of motion = ODEs 

- Solution by numerical integration of ODEs: Explicit Euler, 
Implicit Euler, Symplectic Euler, etc.. 

- Error and instability, methods to combat instability 

Acknowledgements: thanks to Keenan Crane, Ren Ng, Tom Funkhouser, James O’Brien 
for presentation resources


