
Interactive Computer Graphics
Stanford CS248, Winter 2020

Dynamics and Time
Integration

Lecture 13:

Stanford CS248, Winter 2020

Challenge: hand animate this clothing!

Stanford CS248, Winter 2020

Dynamical description of motion

“Dynamics is concerned with the study of forces and their effect
on motion, as opposed to kinematics, which studies the motion
of objects without reference to its causes.”

—Sir Wiki Pedia, present

“A change in motion is proportional to the motive force
impressed and takes place along the straight line in which that
force is impressed.”

—Sir Isaac Newton, 1687

(Q: Is keyframe interpolation dynamic, or kinematic?)

Stanford CS248, Winter 2020

Newton’s 2nd law

force

mass

acceleration

Stanford CS248, Winter 2020

Physically based animation
Generate motion of objects using numerical simulation

g
<latexit sha1_base64="6ZF14iSqpiKBEdJjPeY+VbF7oz4=">AAAB9HicbVDNSgMxGPzW31r/qh69BIvgqeyKoN4KXvRWwbWFdi3ZbLYNzSZLklXK0vfw4kHFqw/jzbcx2+5BWwdChpnvI5MJU860cd1vZ2l5ZXVtvbJR3dza3tmt7e3fa5kpQn0iuVSdEGvKmaC+YYbTTqooTkJO2+HoqvDbj1RpJsWdGac0SPBAsJgRbKz00Aslj/Q4sVc+mPRrdbfhToEWiVeSOpRo9WtfvUiSLKHCEI617npuaoIcK8MIp5NqL9M0xWSEB7RrqcAJ1UE+TT1Bx1aJUCyVPcKgqfp7I8eJLqLZyQSboZ73CvE/r5uZ+CLImUgzQwWZPRRnHBmJigpQxBQlho8twUQxmxWRIVaYGFtU1ZbgzX95kfinjcuGe3tWb96UbVTgEI7gBDw4hyZcQwt8IKDgGV7hzXlyXpx352M2uuSUOwfwB87nD6QQktI=</latexit><latexit sha1_base64="6ZF14iSqpiKBEdJjPeY+VbF7oz4=">AAAB9HicbVDNSgMxGPzW31r/qh69BIvgqeyKoN4KXvRWwbWFdi3ZbLYNzSZLklXK0vfw4kHFqw/jzbcx2+5BWwdChpnvI5MJU860cd1vZ2l5ZXVtvbJR3dza3tmt7e3fa5kpQn0iuVSdEGvKmaC+YYbTTqooTkJO2+HoqvDbj1RpJsWdGac0SPBAsJgRbKz00Aslj/Q4sVc+mPRrdbfhToEWiVeSOpRo9WtfvUiSLKHCEI617npuaoIcK8MIp5NqL9M0xWSEB7RrqcAJ1UE+TT1Bx1aJUCyVPcKgqfp7I8eJLqLZyQSboZ73CvE/r5uZ+CLImUgzQwWZPRRnHBmJigpQxBQlho8twUQxmxWRIVaYGFtU1ZbgzX95kfinjcuGe3tWb96UbVTgEI7gBDw4hyZcQwt8IKDgGV7hzXlyXpx352M2uuSUOwfwB87nD6QQktI=</latexit><latexit sha1_base64="6ZF14iSqpiKBEdJjPeY+VbF7oz4=">AAAB9HicbVDNSgMxGPzW31r/qh69BIvgqeyKoN4KXvRWwbWFdi3ZbLYNzSZLklXK0vfw4kHFqw/jzbcx2+5BWwdChpnvI5MJU860cd1vZ2l5ZXVtvbJR3dza3tmt7e3fa5kpQn0iuVSdEGvKmaC+YYbTTqooTkJO2+HoqvDbj1RpJsWdGac0SPBAsJgRbKz00Aslj/Q4sVc+mPRrdbfhToEWiVeSOpRo9WtfvUiSLKHCEI617npuaoIcK8MIp5NqL9M0xWSEB7RrqcAJ1UE+TT1Bx1aJUCyVPcKgqfp7I8eJLqLZyQSboZ73CvE/r5uZ+CLImUgzQwWZPRRnHBmJigpQxBQlho8twUQxmxWRIVaYGFtU1ZbgzX95kfinjcuGe3tWb96UbVTgEI7gBDw4hyZcQwt8IKDgGV7hzXlyXpx352M2uuSUOwfwB87nD6QQktI=</latexit> v

<latexit sha1_base64="WgjsKJTcI7AsrgdyuucAtaiYKdg=">AAAB9HicbVDNSgMxGPy2/tX6V/XoJVgET2UrgnoreNFbBdcW2rVks9k2NJssSbZSlr6HFw8qXn0Yb76N2XYP2joQMsx8H5lMkHCmjet+O6WV1bX1jfJmZWt7Z3evun/woGWqCPWI5FJ1AqwpZ4J6hhlOO4miOA44bQej69xvj6nSTIp7M0moH+OBYBEj2FjpsRdIHupJbK9sPO1Xa27dnQEtk0ZBalCg1a9+9UJJ0pgKQzjWuttwE+NnWBlGOJ1WeqmmCSYjPKBdSwWOqfazWeopOrFKiCKp7BEGzdTfGxmOdR7NTsbYDPWil4v/ed3URJd+xkSSGirI/KEo5chIlFeAQqYoMXxiCSaK2ayIDLHCxNiiKraExuKXl4l3Vr+qu3fnteZt0UYZjuAYTqEBF9CEG2iBBwQUPMMrvDlPzovz7nzMR0tOsXMIf+B8/gC6zJLh</latexit><latexit sha1_base64="WgjsKJTcI7AsrgdyuucAtaiYKdg=">AAAB9HicbVDNSgMxGPy2/tX6V/XoJVgET2UrgnoreNFbBdcW2rVks9k2NJssSbZSlr6HFw8qXn0Yb76N2XYP2joQMsx8H5lMkHCmjet+O6WV1bX1jfJmZWt7Z3evun/woGWqCPWI5FJ1AqwpZ4J6hhlOO4miOA44bQej69xvj6nSTIp7M0moH+OBYBEj2FjpsRdIHupJbK9sPO1Xa27dnQEtk0ZBalCg1a9+9UJJ0pgKQzjWuttwE+NnWBlGOJ1WeqmmCSYjPKBdSwWOqfazWeopOrFKiCKp7BEGzdTfGxmOdR7NTsbYDPWil4v/ed3URJd+xkSSGirI/KEo5chIlFeAQqYoMXxiCSaK2ayIDLHCxNiiKraExuKXl4l3Vr+qu3fnteZt0UYZjuAYTqEBF9CEG2iBBwQUPMMrvDlPzovz7nzMR0tOsXMIf+B8/gC6zJLh</latexit><latexit sha1_base64="WgjsKJTcI7AsrgdyuucAtaiYKdg=">AAAB9HicbVDNSgMxGPy2/tX6V/XoJVgET2UrgnoreNFbBdcW2rVks9k2NJssSbZSlr6HFw8qXn0Yb76N2XYP2joQMsx8H5lMkHCmjet+O6WV1bX1jfJmZWt7Z3evun/woGWqCPWI5FJ1AqwpZ4J6hhlOO4miOA44bQej69xvj6nSTIp7M0moH+OBYBEj2FjpsRdIHupJbK9sPO1Xa27dnQEtk0ZBalCg1a9+9UJJ0pgKQzjWuttwE+NnWBlGOJ1WeqmmCSYjPKBdSwWOqfazWeopOrFKiCKp7BEGzdTfGxmOdR7NTsbYDPWil4v/ed3URJd+xkSSGirI/KEo5chIlFeAQqYoMXxiCSaK2ayIDLHCxNiiKraExuKXl4l3Vr+qu3fnteZt0UYZjuAYTqEBF9CEG2iBBwQUPMMrvDlPzovz7nzMR0tOsXMIf+B8/gC6zJLh</latexit>

xt+�t = xt +�tvt +
1

2
(�t)2at

<latexit sha1_base64="Lh2J5VH4goJ7Enm6mOtyLXSn5KY=">AAACXnicbVHLSgMxFM2M7z606kZwEyxCRSgzRVAXgqAL3SlYW2inJZPJaGjmQXKnWML8pDvBjX9iprZQrRdCDuecy7058VPBFTjOh2WvrK6tb2xulcqV6vZObXfvWSWZpKxNE5HIrk8UEzxmbeAgWDeVjES+YB1/dFPonTGTiifxE0xS5kXkJeYhpwQMNayN+34iAjWJzKXf8oGG0/4tE0Aw5PgKL6k5PsVzwy91nA+g0EJJqHZz3cobc9/JoLXoJMY5rNWdpjMtvAzcGaijWT0Ma+/9IKFZxGKggijVc50UPE0kcCpYXupniqWEjsgL6xkYk4gpT0/zyfGxYQIcJtKcGPCUXezQJFLFcsYZEXhVf7WC/E/rZRBeeJrHaQYspj+DwkxgSHARNg64ZBTExABCJTe7YvpKTEJgvqRkQnD/PnkZtFvNy6bzeFa/vp+lsYkO0RFqIBedo2t0hx5QG1H0adlW2apYX/aGXbV3fqy2NevZR7/KPvgG2R+2qw==</latexit><latexit sha1_base64="Lh2J5VH4goJ7Enm6mOtyLXSn5KY=">AAACXnicbVHLSgMxFM2M7z606kZwEyxCRSgzRVAXgqAL3SlYW2inJZPJaGjmQXKnWML8pDvBjX9iprZQrRdCDuecy7058VPBFTjOh2WvrK6tb2xulcqV6vZObXfvWSWZpKxNE5HIrk8UEzxmbeAgWDeVjES+YB1/dFPonTGTiifxE0xS5kXkJeYhpwQMNayN+34iAjWJzKXf8oGG0/4tE0Aw5PgKL6k5PsVzwy91nA+g0EJJqHZz3cobc9/JoLXoJMY5rNWdpjMtvAzcGaijWT0Ma+/9IKFZxGKggijVc50UPE0kcCpYXupniqWEjsgL6xkYk4gpT0/zyfGxYQIcJtKcGPCUXezQJFLFcsYZEXhVf7WC/E/rZRBeeJrHaQYspj+DwkxgSHARNg64ZBTExABCJTe7YvpKTEJgvqRkQnD/PnkZtFvNy6bzeFa/vp+lsYkO0RFqIBedo2t0hx5QG1H0adlW2apYX/aGXbV3fqy2NevZR7/KPvgG2R+2qw==</latexit><latexit sha1_base64="Lh2J5VH4goJ7Enm6mOtyLXSn5KY=">AAACXnicbVHLSgMxFM2M7z606kZwEyxCRSgzRVAXgqAL3SlYW2inJZPJaGjmQXKnWML8pDvBjX9iprZQrRdCDuecy7058VPBFTjOh2WvrK6tb2xulcqV6vZObXfvWSWZpKxNE5HIrk8UEzxmbeAgWDeVjES+YB1/dFPonTGTiifxE0xS5kXkJeYhpwQMNayN+34iAjWJzKXf8oGG0/4tE0Aw5PgKL6k5PsVzwy91nA+g0EJJqHZz3cobc9/JoLXoJMY5rNWdpjMtvAzcGaijWT0Ma+/9IKFZxGKggijVc50UPE0kcCpYXupniqWEjsgL6xkYk4gpT0/zyfGxYQIcJtKcGPCUXezQJFLFcsYZEXhVf7WC/E/rZRBeeJrHaQYspj+DwkxgSHARNg64ZBTExABCJTe7YvpKTEJgvqRkQnD/PnkZtFvNy6bzeFa/vp+lsYkO0RFqIBedo2t0hx5QG1H0adlW2apYX/aGXbV3fqy2NevZR7/KPvgG2R+2qw==</latexit>

Stanford CS248, Winter 2020

Generalized coordinates
Often describing systems with many, many moving pieces
E.g., a collection of billiard balls, each with position xi

Collect them all into a single vector of generalized coordinates:

Can think of q as a single point moving along a trajectory in Rn
This way of thinking naturally maps to the way we actually solve
equations on a computer: all variables are often “stacked” into a
big long vector and handed to a solver

Stanford CS248, Winter 2020

Generalized velocity
Generalized velocity: it’s the time derivative of the
generalized coordinates!

All of life (and physics) is just
traveling along a curve...

Stanford CS248, Winter 2020

Ordinary differential equations
Many dynamical systems can be described via an ordinary
differential equation (ODE) in generalized coordinates:

velocity functionchange in configuration over time

ODE doesn’t have to describe mechanical phenomenon, e.g.,

“rate of growth is proportional to value”

Solution:
Describes exponential decay (a < 1), or really great stock (a > 1)
“Ordinary” means “involves derivatives in time but not space”
We’ll leave talking about spatial derivatives (PDEs) to CS348C

Stanford CS248, Winter 2020

Dynamics via ODEs
Another key example: Newton’s 2nd law!

“Second order” ODE since we take two time derivatives

Can also write as a system of two first order ODEs, by
introducing new “dummy” variable for velocity:

Splitting things up this way will make it easier to talk about
solving these equations numerically

Stanford CS248, Winter 2020

Simple example: throwing a rock
Consider a rock* of mass m tossed under force of gravity g
Easy to write dynamical equations, since only force is gravity:

*Yes, this rock is spherical and has uniform density.

or

Solution:

(What do we need a computer for?!)

Stanford CS248, Winter 2020

Force due to gravity
Gravity at earth’s surface due to earth

- g is gravitational acceleration,  
g = –9.8m/s2

Fg = �mg

g = (0, 0,�9.8)m/s2

Stanford CS248, Winter 2020

Slightly harder example: pendulum
Mass on end of a bar, swinging under gravity
What are the equations of motion?
Same as “rock” problem, but constrained
Could use a “force diagram”
- You probably did this for many hours in

high school/college
- Let’s do something different…

Stanford CS248, Winter 2020

Lagrangian mechanics
Beautifully simple recipe:
1. Write down kinetic energy
2. Write down potential energy
3. Write down Lagrangian
4. Dynamics of system given by Euler-Lagrange equation

Why is this useful?
- often easier to come up with (scalar) energies than forces
- very general, works in any kind of generalized coordinates
- helps develop nice class of numerical integrators (symplectic)

Great reference: Sussman & Wisdom, “Structure and Interpretation of Classical Mechanics”

Joe Lagrange

becomes (generalized)
“MASS TIMES ACCELERATION” becomes (generalized) “FORCE”

Stanford CS248, Winter 2020

Lagrangian mechanics - example
Generalized coordinates for pendulum?

Kinetic energy (mass m)?

Potential energy?

Euler-Lagrange equations: (from here, just “plug and chug”—even a computer could do it!)

just one coordinate:
angle with the vertical direction

Stanford CS248, Winter 2020

Solving the pendulum
Great, now we have a nice simple equation for the pendulum:

For small angles (e.g., clock pendulum) can approximate as

“harmonic oscillator”

In general, there is no closed form solution!
Hence, we must use a numerical approximation
...And this was (almost) the simplest system we can think of!
(What if we want to animate something more interesting?)

Stanford CS248, Winter 2020

Not-so-simple example: double pendulum
Blue ball swings from fixed point; green ball swings from blue one
Simple system... not-so-simple motion!
Chaotic: perturb input, wild changes to output
Must again use numerical approximation

Stanford CS248, Winter 2020

Not-so-simple example: n-body problem
Consider the Earth, moon, and sun—where do they go?
Solution is trivial for two bodies (e.g., assume one is fixed)
As soon as n ≥ 3, again get chaotic solutions (no closed form)
What if we want to simulate entire galaxies?

Credit: Governato et al / NASA

Stanford CS248, Winter 2020

For animation, we want to simulate
these kinds of phenomena!

Stanford CS248, Winter 2020

Example: flocking

Stanford CS248, Winter 2020

Simulated flocking as an ODE
Each bird is a particle
Subject to very simple forces:

- attraction to center of neighbors

- repulsion from individual neighbors

- alignment toward average trajectory of neighbors
Solve large system of ODEs (numerically!)
Emergent complex behavior (also seen in fish, bees, ...)

attraction repulsion alignment
Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

http://www.red3d.com/cwr/boids/

Stanford CS248, Winter 2020

Particle systems
Model phenomena as large collection of particles
Each particle has a behavior described by (physical or non-physical) forces
Extremely common in graphics/games
- easy to understand
- simple equation for each particle
- easy to scale up/down

Credit: LMHPoly https://www.youtube.com/watch?v=MYU1vBcUkfw

https://www.youtube.com/watch?v=MYU1vBcUkfw

Stanford CS248, Winter 2020

Example: crowds

Where are the bottlenecks in a building plan?

Stanford CS248, Winter 2020

Example: crowds + “rock” dynamics

Stanford CS248, Winter 2020

Example: particle-based fluids

Macklin and Müller, Position Based Fluids

(Fluid: particles or continuum?)

Stanford CS248, Winter 2020

Example: granular materials

Bell et al, “Particle-Based Simulation of Granular Materials”

Stanford CS248, Winter 2020

Example: molecular dynamics

(model of melting ice crystal)

Stanford CS248, Winter 2020

Gravitational attraction
Newton’s universal law of gravitation

- Gravitational pull between particles

Fg = G
m1m2

d2

G = 6.67428⇥ 10�11 Nm2kg�2

d

m1 m2

Stanford CS248, Winter 2020

Example: cosmological simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)

Stanford CS248, Winter 2020

Example: mass-spring system
Connect particles x1, x2 by a spring of length L0
Potential energy is given by

stiffness current length

rest length

Connect up many springs to describe interesting phenomena
Extremely common in graphics/games
- easy to understand
- simple equation for each particle

=
1

2
k(|x1 � x2|� L0)

2

Stanford CS248, Winter 2020

Non-zero length spring
Spring with non-zero rest length

- Below: direct specification of force
on x1 due to spring)

Problem: oscillates forever…

How might we add internal dampening?

fx1 = k(|x2 � x1|� L0)

Stanford CS248, Winter 2020

Example: mass-spring rope

Credit: Elizabeth Labelle, https://youtu.be/Co8enp8CH34

https://youtu.be/Co8enp8CH34

Stanford CS248, Winter 2020

Example: hair

Stanford CS248, Winter 2020

Example: mass-spring system

Stanford CS248, Winter 2020

Example structures from springs
Sheets

Blocks

Stanford CS248, Winter 2020

Structures from springs
Behavior is determined by structure linkages

This structure will not resist shearing

It will also not resist out-of-plane
bending.

Stanford CS248, Winter 2020

Structures from springs
Behavior is determined by structure linkages

This structure will resist shearing 
but has anisotropic bias

It will not resist out-of-plane bending.

Stanford CS248, Winter 2020

Structures from springs
Behavior is determined by structure linkages

This structure will resist shearing.  
Less directional bias.

But will not resist out-of-plane
bending...

Stanford CS248, Winter 2020

Structures from springs

This structure not resist shearing. 
Less directional bias.

This structure will resist out-of-plane
bending.

In general, red springs should be weaker

Behavior is determined by structure linkages

Stanford CS248, Winter 2020

Example: mass spring + character anim

Stanford CS248, Winter 2020

How do we solve these
systems numerically?

Stanford CS248, Winter 2020

Numerical integration
Key idea: replace derivatives with differences
In ODE, only need to worry about derivative in time
Replace time-continuous function q(t) with samples qk in time

“time step,” i.e., interval of
time between qk and qk+1

new configuration
(unknown—want to solve for this!) current configuration

(known)

Wait... where do we
evaluate the velocity
function? At the new
or old configuration?

Stanford CS248, Winter 2020

Forward Euler
Simplest scheme: evaluate velocity at current configuration
New configuration can then be written explicitly in terms of known data:

new configuration current configuration velocity at current time

Very intuitive: walk a tiny bit in the direction of the velocity
Problems: poor accuracy and not very stable

Stanford CS248, Winter 2020

Euler’s method - error
With numerical integration, errors accumulate

Example:

Euler's Method

x(t + Δt) = x(t) + Δt f(x,t)

• Simplest numerical
solution method

• Discrete time steps

• Bigger steps, bigger
errors.

Figure 3: Euler’s method: instead of the true integral curve, the approximate solution follows a

polygonal path, obtained by evaluating the derivative at the beginning of each leg. Here we show

how the accuracy of the solution degrades as the size of the time step increases.

In contrast, we will be concerned exclusively with numerical solutions, in which we take dis-

crete time steps starting with the initial value x(t0). To take a step, we use the derivative function

f to calculate an approximate change in x, !x, over a time interval !t , then increment x by !x to

obtain the new value. In calculating a numerical solution, the derivative function f is regarded as

a black box: we provide numerical values for x and t , receiving in return a numerical value for ẋ.

Numerical methods operate by performing one or more of these derivative evaluations at each time

step.

2.1 Euler’s Method

The simplest numerical method is called Euler’s method. Let our initial value for x be denoted by

x0 = x(t0) and our estimate of x at a later time t0 + h by x(t0 + h), where h is a stepsize parameter.

Euler’s method simply computes x(t0 + h) by taking a step in the derivative direction,

x(t0 + h) = x0 + hẋ(t0).

You can use the mental picture of a 2D vector field to visualize Euler’s method. Instead of the

real integral curve, p follows a polygonal path, each leg of which is determined by evaluating the

vector f at the beginning, and scaling by h. See figure 3.

Though simple, Euler’s method is not accurate. Consider the case of a 2D function f whose

integral curves are concentric circles. A point p governed by f is supposed to orbit forever on

whichever circle it started on. Instead, with each Euler step, p will move on a straight line to a circle

of larger radius, so that its path will follow an outward spiral. Shrinking the stepsize will slow the

rate of this outward drift, but never eliminate it.

SIGGRAPH ’97 COURSE NOTES B3 PHYSICALLY BASEDMODELING

Witkin and Baraff

Solution path
Euler estimate with small time step
Euler estimate with large time step

qk+1 = qk + ⌧ q̇k

Stanford CS248, Winter 2020

Problem: instability

Very intuitive: walk a tiny bit in the direction of the velocity
Unfortunately, not very stable, consider a spring…

When mass is moving inward:
• Force is decreasing
• Each time-step overestimates the velocity change

(increases energy)
When mass gets to origin

• Has velocity that is too high, now traveling outward
When mass is moving outward

• Force is increasing
• Each time-step underestimates the velocity change

(increases energy)
With each motion cycle, mass gains energy exponentially

Two Problems

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
your choice.

Instability: off to
Neptune!

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals

outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking

the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.

Below: too large a stepsize can make Euler’s method diverge.

Moreover, Euler’s method can be unstable. Consider a 1D function f = −kx , which should
make the point p decay exponentially to zero. For sufficiently small step sizes we get reasonable

behavior, but when h > 1/k, we have |!x | > |x |, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all

their time performing derivative evaluations, so the computational cost per step is determined by

the number of evaluations per step. Though Euler’s method only requires one evaluation per step,

the real efficiency of a method depends on the size of the steps it lets you take—while preserving

accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-

quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because

their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at

the error that the method produces. The key to understanding what’s going on is the Taylor series:

Assuming x(t) is smooth, we can express its value at the end of the step as an infinite sum involving

the the value and derivatives at the beginning:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
x˙̇ ˙(t0) + . . . + hn

n!

∂nx

∂tn
+ . . .

As you can see, we get the Euler update formula by truncating the series, discarding all but the

first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference

SIGGRAPH ’97 COURSE NOTES B4 PHYSICALLY BASEDMODELING

qk+1 = qk + ⌧ q̇k

Stanford CS248, Winter 2020

Another example

starts out slow...

...gradually moves faster & faster!

Where did all this
extra energy come

from?

Consider a pendulum…

Stanford CS248, Winter 2020

Forward Euler - stability analysis
Let’s consider behavior of forward Euler for simple linear ODE:

Forward Euler approximation is

Which means after n steps, we have

Importantly: u should decay (exact solution is u(t)=e - at)

Decays only if |1-τa| < 1, or equivalently, if τ < 2/a
In practice: need very small time steps if a is large (“stiff system”)

starts out slow...

...and eventually stops moving completely.
Stanford CS248, Winter 2020

Backward Euler
Let’s try something else: evaluate velocity at next configuration
New configuration is then implicit, and we must solve for it:

new configuration current configuration velocity at next time

Harder to solve, since in general f can be very nonlinear!
Pendulum is now stable... perhaps too stable?

Where did all the
energy go?

Stanford CS248, Winter 2020

Backward Euler - stability analysis
Again consider a simple linear ODE:

Backward Euler approximation is

Which means after n steps, we have

Remember: u should decay (exact solution is u(t)=e - at)

Decays if |1+τa| > 1, which is always true!
⇒Backward Euler is unconditionally stable for linear ODEs

starts out slow...

...and keeps on ticking.
Stanford CS248, Winter 2020

Symplectic Euler
Backward Euler was stable, but we also saw (empirically) that it
exhibits numerical damping (damping not found in original eqn.)
Nice alternative is symplectic Euler
- update velocity using current configuration

- update configuration using new velocity
Easy to implement; used often in practice
Pendulum now conserves energy almost exactly, forever:

(Proof? The analysis
is not quite as easy...)

Stanford CS248, Winter 2020

Numerical integrators
Barely scratched the surface
Many different integrators
Why? Because many notions of “good”:

- stability

- accuracy

- consistency/convergence

- conservation, symmetry, ...

- computational efficiency (!)
No one “best” integrator—pick the right tool for the job!
Could do (at least) an entire course on time integration...
Great book: Hairer, Lubich, Wanner

Stanford CS248, Winter 2020

Not covered today: contact mechanics

Smith et al, “Reflections on Simultaneous Impact”

Stanford CS248, Winter 2020

Not covered today: contact mechanics

Bridson et al. 2002

Stanford CS248, Winter 2020

Yarn-level cloth simulation

Kaldor et al. 2010

Stanford CS248, Winter 2020

Material fracture

Pfaff et al. 2014

Stanford CS248, Winter 2020

Summary
Mathematical modeling of dynamical systems and (usually)
solution by numerical integration
Particle systems

- Flexible force modeling, e.g. spring-mass sytems,
gravitational attraction, fluids, flocking behavior

- Newtonian equations of motion = ODEs

- Solution by numerical integration of ODEs: Explicit Euler,
Implicit Euler, Symplectic Euler, etc..

- Error and instability, methods to combat instability

Acknowledgements: thanks to Keenan Crane, Ren Ng, Tom Funkhouser, James O’Brien
for presentation resources

