Lecture 9:;

Accelerating Geometric
Queries

Interactive Computer Graphics
Stanford (5248, Winter 2020

M.L.A.

“Paper Planes”
(Kala)

“B.V.H. was taken by the graphics folks, so | went with M.I.A.”
- Mathangi Arulpragasam

Stanford (5248, Winter 2020

Last time: intersecting a ray with
individual primitives

Ray-plane

Ray-sphere

Ray-triangle

Stanford (5248, Winter 2020

Applying what you learned

m (Consider interesting a ray with a cylinder with radius R and
length L! (centered at the origin)

I'll give you:
the implicit form of a circle in 2D

22 + 4% = R?
From last class you know:
Explicit form for a ray:

r(t) = o+ td

Implicit form for a plane:
Nix = ¢

Q. What if the cylinder is centered at

(Xo,Y0,20) instead of the origin?

Stanford (5248, Winter 2020

Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the

closest point of intersection of r with the scene

“Find the first primitive the ray hits”

p closest = NULL
t closest = inf

for each primitive p in scene:

t = p.intersect(r)

if t >= 0 &&
t _closest
p closest

t

< t _closest:
t

p

Complexity? O (N)

Can we do better?

(Assume p.intersect(r) returns value of t corresponding to

the point of intersection with ray r)

Stanford (5248, Winter 2020

One simple idea

m “Early out” — Skip ray-primitive test if it is computationally
easy to determine that ray does not intersect primitives

m E.g., Aray cannot intersect a primitive if it doesn’t intersect
the bounding box containing it!

O

Note: early out does not change
asymptotic complexity of ray-scene
intersection. But reduces cost by a

constant if ray is far from most triangles.
Stanford (5248, Winter 2020

Ray-axis-aligned-box intersection

What is ray’s closest/farthest intersection with axis-aligned box?

Find intersection of ray with all planes of box:
Nt (o+td) =c

Math simplifies greatly since plane is

axis aligned (consider x=xo plane in 2D):
NT=[1 0]
C — Xy
T Lo — Ox
dx
Yo Performance note: it is possible to precompute
box independent terms, so computing tis cheap
X0 X1 1 d b Oy
Figure shows intersections S0... 1 — ar - b

with x=x¢ and x=x1 planes.
Stanford (5248, Winter 2020

Ray-axis-aligned-box intersection

Compute intersections with all planes, take intersection of tyin/tmax intervals

tmaxE

Y1 Y1 timax
d d
o o
tmin
SO £ -
;Xo ;XI Note: tmin <o ;XO ;XI ;Xo §X1
Intersections with x planes Intersections with y planes Final intersection result

How do we know when the ray misses the box?

Stanford (5248, Winter 2020

Ray-scene intersection with early out

Given a scene defined by a set of N primitives and a ray r, find the

closest point of intersection of r with the scene

p closest = NULL
t closest = inf

for each primitive p in scene:

if (!p.bbox.intersect(r))

continue;

t = p.intersect(r)

if t >= 0 &&
t closest
p closest

t

< t _closest:
t

p

Still O(N') complexity.

(Assume p.intersect(r) returns value of t corresponding

to the point of intersection with ray r)

Stanford (5248, Winter 2020

Review: recall optimization in simple rasterizer

Sample = 2D point
Coverage: 2D point in triangle tests
Occlusion: depth buffer

initialize z closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t_proj = project_triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z closest[s] and color[s]

\4

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t _proj = project_triangle(t)
for each 2D sample s in 2D BOUNDING BOX OF TRIANGLE: // loop 2: over visibility samples

if (t_proj covers s) \
compute color of triangle at sample Cull samples not within bbox

if (depth of t at s is closer than z_closest[s]) (ifsample notin bbox don’t attempt
update z_closest[s] and color|[s] . « e .
more expensive point in triangle test)

Stanford (5248, Winter 2020

Data structures for reducing O(N)
complexity of ray-scene intersection

Given ray, find closest intersection with set of scene triangles.*

* We are also interested in: Given ray, find if there is any intersection with scene triangles

Stanford (5248, Winter 2020

A simpler problem

B [magine | have a set of integers S
B Given an integer, say k=18, find the element of S closest to k:

10 123 2 100 6 25 64 11 200 30 950 111 8 1 80
What's the cost of finding k in terms of the size N of the set?

Can we do better?

Suppose we first sort the integers:

1 2 6 8 10 11 25 30 64 80 100 111 123 200 950

How much does it now cost to find k (including sorting)?

Cost for just ONE query: O(n log n) worse than before! :-(
Amortized cost over many queries: O(log n) ...much hetter!

Stanford (5248, Winter 2020

Can we also reorganize scene primitives to
enable fast ray-scene intersection queries?

Stanford (5248, Winter 2020

Simple case

O

q Ray misses bounding box of all primitives in scene

/\ /\ /\ Cost (misses box):
preprocessing: 0(n)

ray-box test: 0(1)
amortized cost*: 0(1)

AA AA

% . _ . .
amortized over many ray-scene intersection tests Stanford (5248, Winter 2020

Another (should be) simple case

/\ Cost (hits box):

: preprocessing: 0(n)
ray-box test: 0(1)
triangle tests: O(n)

/\ /\ amortized cost*: O(n)

Still no better than
.«/«l naive algorithm
(test all triangles)!

% . _ . .
amortized over many ray-scene intersection tests Stanford (5248, Winter 2020

Q: How can we do better?

A: Apply this strateqgy hierarchically

Bounding volume hierarchy (BVH)

Root —>.

Bounding volume hierarchy (BVH)

m BVH partitions each node’s primitives into disjoints sets
- Note: the sets can overlap in space (see example below)

o

Stanford (5248, Winter 2020

Bounding volume hierarchy (BVH)

Bounding volume hierarchy (BVH)

m Leaf nodes:
- Contain small list of primitives
B [nterior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford (5248, Winter 2020

Bounding volume hierarchy (BVH)

Left: two different BVH
organizations of the same
scene containing 22
primitives.

/

N\ Is one BVH better than the
A other?
20 1

1,2,3 6,78, 12,13,14, 18,19,20, 1,2,3 6,7,8, 12,13,14, 18,19,20,
4,5 910,11 15,116,177 21,22 4,5 910,11 15,16,17 21,22

Stanford (5248, Winter 2020

Ray-scene intersection using a BVH

struct BVHNode {
bool leaf; // true if node is a leaf
BBox bbox; // min/max coords of enclosed primitives D> hode
BVHNode* childl; // “left” child (could be NULL)
BVHNode* child2; // “right” child (could be NULL)
Primitive* primList; // for leaves, stores primitives 2

child2

Y
struct HitInfo { child1 Zﬁ&
Primitive* prim; // which primitive did the ray hit? tfgé

float t; // at what t value along ray?

void find closest hit(Ray* ray, BVHNode* node, HitInfo* closest) {
HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box

if (hit.t > closest.t)) .))
return; // don’t update the hit record Can this occur if ray hits the box?

(assume hit.t is INF if ray misses box)
if (node->leaf) {
for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim != NULL && hit.t < closest.t) {
closest.prim = p;
closest.t = t;

}
} else {

find_closest_hit(ray, node->childl, closest);
find_closest_hit(ray, node->child2, closest);

}}
Stanford (5248, Winter 2020

Improvement: “front-to-back” traversal

New invariant compared to last slide:
assume find_closest_ hit() is only called on node ray
intersects bhox of node.

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) { child2

child1 f I::
if (node->leaf) { &b Q A

for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim != NULL && t < closest.t) {
closest.prim = p;
closest.t = t;

}

}
} else {

HitInfo hitl = intersect(ray, node->childl->bbox);
HitInfo hit2 intersect (ray, node->child2->bbox);

NVHNode* first = (hitl.t <= hit2.t) ? childl : child2; | “Frontto back” traversal.
NVHNode* second (hitl.t <= hit2.t) ? child2 : childl;

Traverse to closest child node first.
find closest hit(ray, first, closest); Vvhy?
if (second child’s t 1is closer than closest.t)
find closest hit(ray, second, closest); // why might we still need to do this?

Stanford (5248, Winter 2020

Aside: another type of query: any hit

Sometimes it is useful to know if the ray hits ANY primitive in the
scene at all (don’t care about distance to first hit)

bool find any hit(Ray* ray, BVHNode* node) {

if (!intersect(ray, node->bbox))
return false;

if (node->leaf) {
for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim)
return true;
} else {
return (find closest hit(ray, node->childl, closest) ||
find closest hit(ray, node->child2, closest));

Interesting question of which child to enter
first. How might you make a good decision?

Stanford (5248, Winter 2020

Why “any hit” queries?

Shadow computations!

Stanford (5248, Winter 2020

For a given set of primitives, there are
many possible BVHs

(~2N ways to partition N primitives into two groups)

Q: How do we build a high-quality BVH?

Stanford (5248, Winter 2020

How would you partition these triangles
Into two groups?

‘A,' g Av ':A

What about these?

Intuition about a “good” partition?
e

h v 'AA
4

[v 'AA

Better partition
Intuition: want small bounding boxes (minimize overlap between children,
avoid bboxes with significant empty space)

Stanford (5248, Winter 2020

What are we really trying to do?

A good partitioning minimizes the expected cost of finding the
closest intersection of a ray with the scene primitives in the node.

If a node is a leaf node (no partitioning):

N
. Where Cisect(7) is the cost of ray-primitive
C — C i ()
Z; sect (1) intersection for primitive i in the node.
—

— NCigoct (Common to assume all primitives have the same cost)

Stanford (5248, Winter 2020

Cost of making a partition

The expected cost of ray-node intersection, given that the node’s
primitives are partitioned into child sets A and B is:

C = Ctrav T pAOA - pBOB

(i1 is the cost of traversing an interior node (e.g., load data + bbox intersection check)

C A and C 1 are the costs of intersection with the resultant child subtrees
PA and PB arethe probability a ray intersects the bbox of the child nodes A and B

Primitive count is common approximation for child node costs:

C = Ctrav + pANAOisect =+ pBNB Cyise(:t

Remaining question: how do we get the probabilities pa, ps?

Stanford (5248, Winter 2020

Estimating probabilities

m For convex object A inside convex object B, the probability
that a random ray that hits B also hits A is given by the ratio
of the surface areas Sy and S of these objects.

P(hitA|hit B) = E—A
B

Leads to surface area heuristic (SAH):

C = Ctrav | gf] NACisect | gf] NB Cisect

Assumptions of the SAH (which may not hold in practice!):
— Rays are randomly distributed
— Rays are not occluded

Stanford (5248, Winter 2020

Implementing partitions

m (onstrain search for good partitions to axis-aligned spatial partitions
- Choose an axis; choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- SAH changes only when split plane moves past triangle boundary
- Have to consider large number of possible split planes. .. O(# objects)

Stanford (5248, Winter 2020

Efficiently implementing partitioning

m Efficient modern approximation: split spatial extent of
primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: Xx,y,z:
initialize bucket counts to O, bboxes to empty
For each primitive p in node:
b = compute bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH

Use lowest cost partition found (or make node a leaf)
Stanford (5248, Winter 2020

Troublesome cases

All primitives with same centroid (all All primitives with same bhox (ray
primitives end up in same partition) often ends up visiting both partitions)

In general, different strategies may work bhetter for different
types of geometry / different distributions of primitives...

Stanford (5248, Winter 2020

Question

B |magine you have a valid BVH.

B Now | move one of the triangles in the scene to a new location
B How do | “refit” the BVH so it is a valid BVH?

Stanford (5248, Winter 2020

Primitive-partitioning acceleration
structures vs. space-partitioning structures

B Primitive partitioning (bounding A
volume hierarchy): partitions y
primitives into disjoint sets (but sets

of primitives may overlap in space) 4 AA

m Space-partitioning (grid, K-D tree) Ay >
partitions space into disjoint regions \ 7

(primitives may be contained in 2 AQ
o (4
\Y%

multiple regions of space)

Stanford (5248, Winter 2020

K-D tree

m Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits
- Node traversal can proceed in strict front-to-back order
- Unlike BVH, can terminate search after first hit is found.

>
Q)

Stanford (5248, Winter 2020

Challenge: objects overlap multiple nodes

® Want node traversal to proceed in front-to-back order so traversal can
terminate search after first hit found

* Caching hit info or “mailboxing” can be used to avoid repeated intersections

..................................

Triangle 1 overlaps multiple nodes.

Ray hits triangle 1 when in highlighted
leaf cell.

But intersection with triangle 2 is closer!
(Haven't traversed to that node yet)

Solution: require primitive intersection
point to be within current leaf node.

(primitives may be intersected multiple

times by same ray *)
Stanford (5248, Winter 2020

Uniform grid (a very simple hierarchy)

Stanford (5248, Winter 2020

Uniform grid

| D | | ® Partition space into equal sized volumes

volume-elements or “voxels”
AWPA v ’
' | 4 /\ m Each grid cell contains primitives that
A “ ‘ A overlap the voxel. (very cheap to
.) “) . construct acceleration structure)

‘\ ' m Walk ray through volume in order
S

— Very efficient implementation

D v ﬁ possible (think: 3D line rasterization)
. | C\> | | — Only consider intersection with
e o _ege . .
D primitives in voxels the ray intersects
A

Stanford (5248, Winter 2020

Consider tiled triangle rasterization

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
for each triangle t in scene: // loop 1: triangles

t _proj = project_triangle(t)
for each 2D tile of screen samples touching bbox of triangle: // loop 2: tiles
if (triangle does not overlap tile)
continue;
for each 2D sample s in tile: // loop 3: visibility samples
if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z closest[s] and color|s]

For each TILE of image

If triangle overlaps tile, check all samples in tile

What does this strategy remind you of? :-)

Stanford (5248, Winter 2020

What should the grid resolution be?

Too few grids cell: degenerates to Too many grid cells: incur significant cost
brute-force approach traversing through cells with empty space

Stanford (5248, Winter 2020

Heuristic

m Choose number of cells ~ total number of primitives

(yields constant prims per cell for any scene size — assuming uniform distribution
of primitives)

Intersection cost: O(m)

D> > v /\ (assuming 3D grid)

(Q: Which grows faster,
\V/ cube root of N or log(N)?

Stanford (5248, Winter 2020

When uniform grids work well: uniform
distribution of primitives in scene

Grass:

o e

Terrain / height fields:

[Image credit: Misuba Renderer]

A

[Image credit: www.kevinboulanger.net/grass.html]

Example credit: Pat Hanrahan Stanford (5248, Winter 2020

Uniform grids cannot adapt to non-uniform
distribution of geometry in scene

. “Teapot in a stadium problem”

Scene has large spatial extent.

| | . Contains a high-resolution object that
Q has small spatial extent (ends up in one
grid cell)

Stanford (5248, Winter 2020

When uniform grids do not work well:
non-uniform distribution of geometric detail

B

AR S 2 - e o

Stanford (5248, Winter 2020

When uniform grids do not work we
non-uniform distribution of geometric detail

[Image credit: Pixar] Stanford €5248, Winter 2020

Quad-tree / octree

Like uniform grid: easy to build (don't
have to choose partition planes)

Has greater ability to adapt to location of
scene geometry than uniform grid.

But lower intersection performance than
K-D tree (the structure only has limited
ability to adapt to distribution of scene
geometry)

Quad-tree: nodes have 4 children (partitions 2D space)
Octree: nodes have 8 children (partitions 3D space)

Stanford (5248, Winter 2020

Disney Moana scene

Released for rendering research purposes in 2018.

15 billion primitives in scene
(more than 90M unique geometric primitives, instancing is used to create full scene)

Stanford (5248, Winter 2020

Disney Moana scene

Stanford (5248, Winter 2020

Disney Moana scene

-
L

Stanford (5248, Winter 2020

Disney Moana scene

Stanford (5248, Winter 2020

Summary of spatial acceleration structures:
Choose the right structure for the job!

B Primitive vs. spatial partitioning:
- Primitive partitioning: partition sets of objects
- Bounded number of BVH nodes, simpler to update if primitives in scene change position
- Spatial partitioning: partition space into non-overlapping regions
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times

m Adaptive structures (BVH, K-D tree)
- More costly to construct (must be able to amortize cost over many geometric queries)
- Better intersection performance under non-uniform distribution of primitives

B Non-adaptive accelerations structures (uniform grids)
- Simple, cheap to construct
- Good intersection performance if scene primitives are uniformly distributed

B Many, many combinations thereof...

Stanford (5248, Winter 2020

A few words on fast ray tracing

Stanford (5248, Winter 2020

A ray tracer is conceptual easy to parallelize

m Trace each ray against scene in parallel

m Use leverage both multi-core
parallelism and SIMD parallelism *

* Take (5149 if you want to know what this means!
Stanford (5248, Winter 2020

Wider BVHs enable easier parallelism

m |dea: use wider-branching BVH (test single ray against multiple child
node bboxes in parallel)

- In practice, BVH’s with branching factor 4 have similar culling efficiency to
branching factor 2

- Good for SIMD processing architectures

[Wald et al. 2008] Stanford (5248, Winter 2020

Increasing interest in high performance
implementations of real-time ray tracing

Microsoft’s DirectX Ray Tracing support/ NVIDIA's DXR announced in April 2018

Image credit: Electronic Arts (Project PICA)

Stanford (5248, Winter 2020

Real time ray tracing

Image credit: Unreal Engine 4

Hardware support for ray tracing

B Accelerate ray tracing by building hardware to perform

operations like ray-triangle intersection and ray-BVH
intersection

B Long academic history of papers...
m 2018: NVIDIA's RTX GPUs — 10B rays/sec

NVIDIA. /

Stanford (5248, Winter 2020

A key challenge is accessing memory efficiently, not just
finding parallel work (again, a core (5149 topic)

m Need large amounts of DRAM for large scenes
- S0 scene BVH and primitives fit in memory

Blue = ray must visit node
m (Consider cache behavior of tracing a batch of rays u l u
(A

ré

r0 r4

G
|

>4

3
E

|

Building a BVH in parallel is tricker!

I'll post a few references for the
curious

But | recommend “Fast Parallel
Construction of High-Quality
Bounding Volume Hierarchies” by
Karras and Aila, HPG 2013

Fast Parallel Construction of High-Quality Bounding Volume Hierarchies

Tero Karras Timo Aila
NVIDIA
Abstract Mrays/s s SBVH e HLBVH ~ seeeees Our method
450
. . . 400
We propose a new massively parallel algorithm for constructing 350
high-quality bounding volume hierarchies (BVHs) for ray tracing. 300
The algorithm is based on modifying an existing BVH to improve 250
its quality, and executes in linear time at a rate of almost 40M tri- 200
angles/sec on NVIDIA GTX Titan. We also propose an improved 150
approach for parallel splitting of triangles prior to tree construc- 100
tion. Averaged over 20 test scenes, the resulting trees offer over 50 7
90% of the ray tracing performance of the best offline construction 0
M 10M 100M 1G 10G 100G 1T

method (SBVH), while previous fast GPU algorithms offer only
about 50%. Compared to state-of-the-art, our method offers a sig-
nificant improvement in the majority of practical workloads that
need to construct the BVH for each frame. On the average, it gives
the best overall performance when tracing between 7 million and
60 billion rays per frame. This covers most interactive applications,
product and architectural design, and even movie rendering.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: ray tracing, bounding volume hierarchies

1 Introduction

Ray tracing is the main ingredient in most of the realistic rendering
algorithms, ranging from offline image synthesis to interactive vi-
sualization. While GPU computing has been successful in acceler-
ating the tracing of rays [Aila and Laine 2009; Aila et al. 2012], the
problem of constructing high-quality acceleration structures needed
to reach this level of performance remains elusive when precompu-
tation is not an option.

Bounding volume hierarchies (BVHs) are currently the most popu-
lar acceleration structures for GPU ray tracing because of their low
memory footprint and flexibility in adapting to temporal changes in
scene geometry. High-quality BVHs are typically constructed us-
ing a greedy top-down sweep [MacDonald and Booth 1990; Stich
et al. 2009], commonly considered to be the gold standard in ray
tracing performance. Recent methods [Kensler 2008; Bittner et al.
2013] can also provide comparable quality by restructuring an ex-
isting, lower quality BVH as a post-process. Still, the construction
of high-quality BVHs is computationally intensive and difficult to
parallelize, which makes these methods poorly suited for applica-
tions where the geometry changes between frames. This includes
most interactive applications, product and architectural visualiza-
tion, and movie production.

Recently, a large body of research has focused on tackling the
problem of animated scenes by trading BVH quality for increased
construction speed [Wald 2007; Pantaleoni and Luebke 2010;
Garanzha et al. 2011a; Garanzha et al. 201 1b; Karras 2012; Kopta
et al. 2012]. Most of these methods are based on limiting the search

Number of rays

Figure 1: Performance of constructing a BVH and then casting
a number of diffuse rays with NVIDIA GTX Titan in SODA (2.2M
triangles). SBVH [Stich et al. 2009] yields excellent ray tracing
performance, but suffers from long construction times. HLBVH
[Garanzha et al. 2011a] is very fast to construct, but reaches only
about 50% of the performance of SBVH. Our method is able to
reach 97% while still being fast enough to use in interactive ap-
plications. In this particular scene, it offers the best quality—speed
tradeoff for workloads ranging from 30M to 500G rays per frame.

space of the top-down sweep algorithm, and they can yield signif-
icant increases in construction speed by utilizing the massive par-
allelism offered by GPUs. However, the BVH quality achieved by
these methods falls short of the gold standard, which makes them
practical only when the expected number of rays per frame is small.

The practical problem facing many applications is that the gap be-
tween the two types of construction methods is too wide (Figure 1).
For moderately sized workloads, the high-quality methods are too
slow to be practical, whereas the fast ones do not achieve sufficient
ray tracing performance. In this paper, we bridge the gap by pre-
senting a novel GPU-based construction method that achieves per-
formance close to the best offline methods, while at the same time
executing fast enough to remain competitive with the fast GPU-
based ones. Furthermore, our method offers a way to adjust the
quality—speed tradeoff in a scene-independent manner to suit the
needs of a given application.

Our main contribution is a massively parallel GPU algorithm for re-
structuring an existing BVH in order to maximize its expected ray
tracing performance. The idea is to look at local neighborhoods of
nodes, i.e., treelets, and solve an NP-hard problem for each treelet
to find the optimal topology for its nodes. Even though the opti-
mization itself is exponential with respect to the size of the treelet,
the overall algorithm scales linearly with the size of the scene. We
show that even very small treelets are powerful enough to transform
a low-quality BVH that can be constructed in a matter of millisec-
onds into a high-quality one that is close to the gold standard in ray
tracing performance.

Our second contribution is a novel heuristic for splitting triangles
prior to the BVH construction that further improves ray tracing per-
formance to within 10% of the best split-based construction method
to date [Stich et al. 2009]. We extend the previous work [Emst and
Greiner 2007; Dammertz and Keller 2008] by providing a more ac-
curate estimate for the expected benefit of splitting a given triangle,
and by taking steps to ensure that the chosen split planes agree with
each other to reduce node overlap more effectively.

Stanford (5248, Winter 2020

Acknowledgements

B Thanks to Keenan Crane, Ren Ng, and Matt Pharr for
presentation resources

Stanford (5248, Winter 2020

