
Interactive Computer Graphics 
Stanford CS248, Winter 2020

Geometric Queries
Lecture 8:



Stanford CS248, Winter 2020

Tunes

Cake 
“The Distance” 

(Fashion Nugget)

“After understand the vector form of point-line and point-plane distance 
computations, I decided to write a song. ” 

- John McCrea
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Geometric queries — motivation

Intersecting triangles (collisions)

Intersecting rays and triangles 
(ray tracing)

Closest point on surface queries
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Example: closest point queries
Q: Given a point, in space (e.g., a new sample point), how do 
we find the closest point on a given surface? 
Q: Does implicit/explicit representation make this easier? 
Q: Does our half-edge data structure help? 
Q: What’s the cost of the naïve algorithm? 
Q: How do we find the distance to a single triangle anyway?

p

???
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Many types of geometric queries
Plenty of other things we might like to know: 

- Do two triangles intersect? 

- Are we inside or outside an object? 

- Does one object contain another? 

- ... 

Data structures we’ve seen so far not really designed for this... 
Need some new ideas! 
TODAY: come up with simple (aka: slow) algorithms 
NEXT TIME: intelligent ways to accelerate geometric queries
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Warm up: closest point on point
Given a query point (p1,p2), how do we find the closest point 
on the point (a1,a2)?

(p1, p2)

(a1, a2)

Bonus question: what’s the distance?



Stanford CS248, Winter 2020

Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal 
How do I find the point on line closest to my query point p?

p
NTx = cN

Many ways to do it:
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p
p

p

p

p

p

p
p p

Harder: closest point on line segment
Two cases: endpoint or interior 
Already have basic components: 

- point-to-point 

- point-to-line 
Algorithm? 

- find closest point on line 

- check if it is between endpoints 

- if not, take closest endpoint 
How do we know if it’s between endpoints? 

- write closest point on line as a+t(b-a) 

- if t is between 0 and 1, it’s inside the segment!

a

b
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Even harder: closest point on triangle in 2D
What are all the possibilities for the closest point?

Q: What about a point inside the triangle?

Almost just minimum distance to three line segments:
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Closest point on triangle in 3D
Not so different from 2D case 
Algorithm: 

- Project point onto plane of triangle 

- Use half-space tests to classify point (vs. half plane) 

- If inside the triangle, we’re done! 

- Otherwise, find closest point on associated vertex or edge 

By the way, how do we find closest point on plane? 
Same expression as closest point on a line!    p + ( c - NTp ) N
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p

Closest point on triangle mesh in 3D?
Conceptually easy: 

- loop over all triangles 

- compute closest point to current triangle 

- keep globally closest point 
Q: What’s the cost? 
What if we have billions of faces? 
NEXT TIME: Better data structures!
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Closest point to implicit surface?
If we change our representation of geometry, algorithms can change 
completely 
E.g., how might we compute the closest point on an implicit surface 
described via its distance function?

One idea: 
- start at the query point 
- compute gradient of distance 

(using, e.g., finite differences) 
- take a little step (decrease 

distance) 
- repeat until we’re at the surface 

(zero distance)

Better yet: just store closest point for 
each grid cell! (speed/memory trade off)
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Different query: ray-mesh intersection
A “ray” is an oriented line starting at a point 
Think about a ray of light traveling from the sun 
Want to know where a ray pierces a surface 
Why? 

- GEOMETRY: inside-outside test 

- RENDERING: visibility, ray tracing 

- ANIMATION: collision detection 
Might pierce surface in many places!
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Ray equation
Can express ray as

“time”
point along ray

origin unit direction
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Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0 
Q: How do we find points where a ray pierces this surface? 
Well, we know all points along the ray: r(t) = o + td 
Idea: replace “x” with “r” in 1st equation, and solve for t 
Example: unit sphere quadratic formula:

Why two solutions?
o

d
|d|2 = 1Note: since d is a unit vector
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Now solve for t: 

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c 

- N - unit normal 

- c - offset 
How do we find intersection with ray r(t) = o + td?

Key idea: again, replace the point x with the ray equation t:
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Ray-triangle intersection
Triangle is in a plane... 
Algorithm: 

- Compute ray-plane intersection 

- Q: What do we do now?
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Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed 

by points: a, b, x 
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Ray-triangle intersection
Algorithm: 
- Compute ray-plane intersection 
- Q: What do we do now? 
- A: Compute barycentric coordinates of hit point? 
- If barycentric coordinates are all positive, point is in triangle 

Many different techniques if you care about efficiency
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Another way: ray-triangle intersection

▪ Parameterize triangle given by vertices                           using 
barycentric coordinates  

p0,p1,p2

▪ Can think of a triangle as an affine map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2
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Another way: ray-triangle intersection

p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
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t

3
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⇤
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4
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t
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x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0)                 transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be 
orthogonal to plane.  It’s a point in 2D triangle test now!

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t: ⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0
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One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself? 
ANIMATION: How do we know if a collision occurred?
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Warm up: point-point intersection
Q: How do we know if p intersects a? 
A: ...check if they’re the same point!

(p1, p2)

(a1, a2)
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Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line? 
A: ...plug it into the line equation!

p
NTx = c
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Line-line intersection
Two lines: ax=b and cx=d 
Q: How do we find the intersection? 
A: See if there is a simultaneous solution 
Leads to linear system:
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Degenerate line-line intersection?
What if lines are almost parallel? 
Small change in normal can lead to big change in intersection! 
Instability very common, very important with geometric 
predicates.  Demands special care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates”
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Triangle-triangle intersection?
Lots of ways to do it 
Basic idea: 

- Q: Any ideas? 

- One way: reduce to edge-triangle intersection 

- Check if each line passes through plane (ray-triangle) 

- Then do interval test 
What if triangle is moving? 

- Important case for animation 

- Can think of triangles as prisms in time 

- Turns dynamic problem (in nD + time) into purely 
geometric problem in (n+1)-dimensions 
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Ray-scene intersection
Given a scene defined by a set of N primitives and a ray r, find the 
closest point of intersection of r with the scene

p_closest = NULL 
t_closest = inf 
for each primitive p in scene: 
   t = p.intersect(r) 
   if t >= 0 && t < t_closest: 
      t_closest = t 
      p_closest = p 
            

“Find the first primitive the ray hits”

O(N)Complexity?
Can we do better?  Of course… but you’ll 
have to wait until next class

(Assume p.intersect(r) returns value of t corresponding to 
the point of intersection with ray r)
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Rendering via ray casting: 
(one common use of ray-scene intersection tests)
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Rasterization and ray casting are two 
algorithms for solving the same problem: 

determining “visibility from a camera”
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Recall triangle visibility:

Question 1: what samples does the triangle overlap? 
(“coverage”)

Question 2: what triangle is closest to the 
camera in each sample? (“occlusion”)

Sample
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The visibility problem
What scene geometry is visible at each screen sample? 
- What scene geometry projects onto screen sample points? (coverage) 
- Which geometry is visible from the camera at each sample? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

x/z
-z axis

x-axis
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Basic rasterization algorithm
Sample = 2D point 
Coverage: 2D triangle/sample tests  (does projected triangle cover 2D sample point) 
Occlusion: depth buffer
initialize z_closest[] to INFINITY             // store closest-surface-so-far for all samples  
initialize color[]                             // store scene color for all samples 
for each triangle t in scene:                  // loop 1: over triangles 
    t_proj = project_triangle(t) 
    for each 2D sample s in frame buffer:      // loop 2: over visibility samples 
        if (t_proj covers s)  
            compute color of triangle at sample 
            if (depth of t at s is closer than z_closest[s]) 
                update z_closest[s] and color[s]

“Given a triangle, find the samples it covers” 
(finding the samples is relatively easy since they are 
distributed uniformly on screen) 

More efficient hierarchical rasterization: 
For each TILE of image 
    If triangle overlaps tile, check all samples in tile
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The visibility problem (described differently)
In terms of casting rays from the camera: 
- Is a scene primitive hit by a ray originating from a point on the virtual 

sensor and traveling through the aperture of the pinhole camera? 
(coverage) 

- What primitive is the first hit along that ray? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

o,do,d
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Basic ray casting algorithm
Sample = a ray in 3D 
Coverage: 3D ray-triangle intersection tests  (does ray “hit” triangle) 
Occlusion: closest intersection along ray

initialize color[]                                 // store scene color for all samples 
for each sample s in frame buffer:                 // loop 1: over visibility samples (rays) 
    r = ray from s on sensor through pinhole aperture 
    r.min_t = INFINITY                             // only store closest-so-far for current ray 
    r.tri = NULL; 
    for each triangle tri in scene:                  // loop 2: over triangles 
        if (intersects(r, tri)) {                    // 3D ray-triangle intersection test 
            if (intersection distance along ray is closer than r.min_t) 
                update r.min_t and r.tri = tri; 
        } 
    color[s] = compute surface color of triangle r.tri at hit point  

Compared to rasterization approach: just a reordering of the loops! 
“Given a ray, find the closest triangle it hits.”
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Basic rasterization vs. ray casting
Rasterization: 
- Proceeds in triangle order (for all triangles) 
- Store entire depth buffer (requires access to 2D array of fixed size) 
- Do not have to store entire scene geometry in memory 

- Naturally supports unbounded size scenes 

Ray casting: 
- Proceeds in screen sample order (for all rays) 

- Do not have to store closest depth so far for the entire screen (just the 
current ray) 

- This is the natural order for rendering transparent surfaces (process 
surfaces in the order the are encountered along the ray: front-to-back) 

- Must store entire scene geometry for fast access
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In other words…
Rasterization is a efficient implementation of ray casting where: 
- Ray-scene intersection is computed for a batch of rays 
- All rays in the batch originate from same origin 
- Rays are distributed uniformly in plane of projection 

(Note: not uniform distribution in angle… angle between rays is smaller 
away from view direction) 
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What object is visible to the camera? 
What light sources are visible from a point on a surface (is a surface in shadow?) 
What reflection is visible on a surface?

Generality of ray-scene queries

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of 
uniformly distributed rays originating from the same point (most often: the camera)

Virtual 
Sensor
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Shadows

Image credit: Grand Theft Auto V
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How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an 
algorithm for ray-scene 
intersection…
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A simple shadow computation algorithm
Trace ray from point P to 
location Li of light source 

If ray hits scene object 
before reaching light 
source… then P is in 
shadow

x

P

L1

L2
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Direct illumination + reflection + transparency

Image credit: Henrik Wann Jensen
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Global illumination solution

Image credit: Henrik Wann Jensen
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Direct illumination

p
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Sixteen-bounce global illumination

p
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Recall rasterization / ray casting relationship
Rasterization is a efficient implementation of ray casting where: 
- Ray-scene intersection is computed for a batch of rays 
- All rays in the batch originate from same origin 
- Rays are distributed uniformly in plane of projection 

(Note: not uniform distribution in angle… angle between rays is 
smaller away from view direction) 
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Shadow mapping: ray origin for rasterization  
need not be the scene’s camera position

Image credits: Segal et al. 92, NVIDIA

“Shadow map” = depth map from perspective of a point light. 
(Stores closest intersection along each shadow ray in a texture)

[Williams 78]

Raytracing [Whitted 1980] and related techniques can accurately
render a variety of global illumination effects including hard shad-
ows. It is possible that real-time rendering systems will eventually
adopt raytracing techniques. However, even with recent progress in
this area [Wald et al. 2003], rendering performance remains inade-
quate for scenes containing deformable objects.
Shadow mapping [Williams 1978] and many of its variants

[Hourcade and Nicolas 1985; Fernando et al. 2001] leverage ex-
isting Z-buffer hardware to render shadows with high performance
for complex scenes. However, existing versions of the technique are
prone to sampling and self-shadowing artifacts that are sufficiently
serious to limit the technique’s use in real applications.
Figure 4 (left) illustrates the shadow map algorithm. The scene

is rendered first from the light position (yielding Znear values) and
then rendered from the eye position. Each pixel in the eye view is
treated as a 3-space point positioned according to its X / Y posi-
tion in the image plane and its Z value (from the depth buffer), and
is transformed into light space. This transformation yields a point
P in light space and a distance ZP between P and the light-view
image plane. The original eye-space pixel is considered to be in
shadow iff Znear ZP, using an estimated Znear value. The algo-
rithm estimates Znear from the Znear values of one or more light-
view sample(s) that are nearest to the projection of point P onto the
light-view image plane. This estimation step is the primary cause
of artifacts produced by the technique as the estimation error is gen-
erally unbounded.
Most recent efforts to reduce these artifacts have taken one of two

approaches. The first is to use additional information from object-
space silhouette computations to reduce or eliminate estimation er-
rors for the most common cases [Sen et al. 2003]. This approach
seems to be the most successful at reducing the incidence of esti-
mation artifacts, but sharp corners and details are often truncated or
lost due to limited precision in the contours used to represent the
silhouettes. Also, the need for object-space computation introduces
additional complexity into the rendering system. The second ap-
proach is to adapt the sampling rate in the light-view image plane to
the characteristics of the scene [Fernando et al. 2001; Stamminger
and Drettakis 2002], thereby reducing the average distance between
a projection of P and the nearest sample point. Fernando et al. [Fer-
nando et al. 2001] replace the standard light view image with an
adaptive image hierarchy. This focus on improving shadow quality
through strategic placement of shadow map sample points is simi-
lar to our own, but we take this approach to its logical extreme by
placing sample points in their ideal locations.

4 Irregular Shadow Mapping

Pseudocode for irregular shadow mapping is shown in Figure 5.
The scene is first rendered from the eye point. As in conventional
shadow mapping, pixels (at the Z values given by the Z-buffer) are
transformed into light space, yielding P and ZP. Unlike conven-
tional shadow mapping, scene geometry is then rasterized to sam-
ple positions in the light view image plane given by the projec-
tion of the transformed pixels, yielding Znear. As before, a pixel
is in shadow iff Znear ZP. Note that irregular shadow maps are
view-dependent. Samples are computed in the shadow map plane
precisely where required by pixels in the eye view. Therefore, no
mismatch exists between the sampling rates or sample positions in
eye and light space. Aliasing and self-shadowing are avoided, and
no unnecessary samples are computed. Moreover, given points P
prior to rasterization in light space, and the property that Znear is
always less than or equal to ZP, we can maximize our use of the
available Z-buffer precision.
Figure 6 plots the location of sample points within irregular

shadow maps for the Doom 3 scene from Figure 1. The density of
sample points varies significantly across the image plane, demon-

Figure 4: Conventional (left) and irregular (right) shadow map-
ping. In the case of the former, the scene is rendered to a conven-
tional Z-buffer from the light, and then from the eye. With the latter,
the scene is rendered to a conventional Z-buffer from the eye, and
to an irregular Z-buffer from the light.

strating the importance of adaptive and irregular sampling methods
in this context.
Observe that irregular shadow mapping effectively mimics

shadow generation by ray tracing. Points P match the intersection
points between eye rays and scene geometry; and steps 2, 4 and 6
imitate light ray computation. Unlike ray tracing, irregular shadow
mapping is an object-order algorithm, which means that primitives
are processed in the order submitted by the application. In this
way, our approach combines the image quality and sampling char-
acteristics of ray-traced shadows with the system organization and
performance characteristics of Z-buffer rendering.

4.1 Image Quality

We compare the quality of images produced by irregular shadow
mapping to that of several other approaches. Figure 1 shows that
images generated using irregular shadow mapping are visually in-
distinguishable from those produced by the shadow volumes tech-
nique. Figure 7 shows that irregular shadow mapping eliminates
shadow aliasing artifacts commonly associated with conventional
shadow mapping. In Figure 8 we use an L2 norm to compare
quantitatively the image quality of our approach to that of three
other approaches. Our quantitative comparison is made against
ray-traced shadows and against two other shadow mapping algo-
rithms that avoid object-space computations: conventional shadow
mapping [Williams 1978] and adaptive shadow mapping [Fernando
et al. 2001]. This figure illustrates that the number of shadow map
samples required to attain high fidelity is much less than that re-
quired by these other shadow mapping techniques.
Our conventional and adaptive implementations include stan-

dard enhancements to reduce self-shadowing and shadow alias-
ing artifacts. These enhancements include percentage closer filter-
ing (PCF) [Reeves et al. 1987], object IDs [Hourcade and Nicolas
1985] and orientation-dependent bias values like those computed by
glPolygonOffset [OpenGL Architectural Review Board 2003].

1. Place camera at position of a point light source 
2. Render scene to compute depth to closest object to light along 

uniformly distributed “shadow rays” (answer stored in depth buffer) 
3. Store precomputed shadow ray intersection results in a texture

Precomputed 
shadow rays
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Shadow texture lookup approximates visibility 
result when shading fragment at P

P

L1 Precomputed shadow rays shown in red: 
Distance to closest object in scene is precomputed 
and stored in texture map (“shadow map”) 
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Shadow mapping pseudocode 
(this logic would be implemented in fragment shader)

Given world-space point Pworld, light 
position (L), and light direction (D) 
Transform P into “light space”, defined 
by light position at origin and -Z 
aligned with D 
Project transformed P into Pproj  
Lookup value in shadow map at 
(Pproj.x, Pproj.y) 
If value from shadow map is less than 
|L-P|, then point P is in shadow 

Raytracing [Whitted 1980] and related techniques can accurately
render a variety of global illumination effects including hard shad-
ows. It is possible that real-time rendering systems will eventually
adopt raytracing techniques. However, even with recent progress in
this area [Wald et al. 2003], rendering performance remains inade-
quate for scenes containing deformable objects.
Shadow mapping [Williams 1978] and many of its variants

[Hourcade and Nicolas 1985; Fernando et al. 2001] leverage ex-
isting Z-buffer hardware to render shadows with high performance
for complex scenes. However, existing versions of the technique are
prone to sampling and self-shadowing artifacts that are sufficiently
serious to limit the technique’s use in real applications.
Figure 4 (left) illustrates the shadow map algorithm. The scene

is rendered first from the light position (yielding Znear values) and
then rendered from the eye position. Each pixel in the eye view is
treated as a 3-space point positioned according to its X / Y posi-
tion in the image plane and its Z value (from the depth buffer), and
is transformed into light space. This transformation yields a point
P in light space and a distance ZP between P and the light-view
image plane. The original eye-space pixel is considered to be in
shadow iff Znear ZP, using an estimated Znear value. The algo-
rithm estimates Znear from the Znear values of one or more light-
view sample(s) that are nearest to the projection of point P onto the
light-view image plane. This estimation step is the primary cause
of artifacts produced by the technique as the estimation error is gen-
erally unbounded.
Most recent efforts to reduce these artifacts have taken one of two

approaches. The first is to use additional information from object-
space silhouette computations to reduce or eliminate estimation er-
rors for the most common cases [Sen et al. 2003]. This approach
seems to be the most successful at reducing the incidence of esti-
mation artifacts, but sharp corners and details are often truncated or
lost due to limited precision in the contours used to represent the
silhouettes. Also, the need for object-space computation introduces
additional complexity into the rendering system. The second ap-
proach is to adapt the sampling rate in the light-view image plane to
the characteristics of the scene [Fernando et al. 2001; Stamminger
and Drettakis 2002], thereby reducing the average distance between
a projection of P and the nearest sample point. Fernando et al. [Fer-
nando et al. 2001] replace the standard light view image with an
adaptive image hierarchy. This focus on improving shadow quality
through strategic placement of shadow map sample points is simi-
lar to our own, but we take this approach to its logical extreme by
placing sample points in their ideal locations.

4 Irregular Shadow Mapping

Pseudocode for irregular shadow mapping is shown in Figure 5.
The scene is first rendered from the eye point. As in conventional
shadow mapping, pixels (at the Z values given by the Z-buffer) are
transformed into light space, yielding P and ZP. Unlike conven-
tional shadow mapping, scene geometry is then rasterized to sam-
ple positions in the light view image plane given by the projec-
tion of the transformed pixels, yielding Znear. As before, a pixel
is in shadow iff Znear ZP. Note that irregular shadow maps are
view-dependent. Samples are computed in the shadow map plane
precisely where required by pixels in the eye view. Therefore, no
mismatch exists between the sampling rates or sample positions in
eye and light space. Aliasing and self-shadowing are avoided, and
no unnecessary samples are computed. Moreover, given points P
prior to rasterization in light space, and the property that Znear is
always less than or equal to ZP, we can maximize our use of the
available Z-buffer precision.
Figure 6 plots the location of sample points within irregular

shadow maps for the Doom 3 scene from Figure 1. The density of
sample points varies significantly across the image plane, demon-

Figure 4: Conventional (left) and irregular (right) shadow map-
ping. In the case of the former, the scene is rendered to a conven-
tional Z-buffer from the light, and then from the eye. With the latter,
the scene is rendered to a conventional Z-buffer from the eye, and
to an irregular Z-buffer from the light.

strating the importance of adaptive and irregular sampling methods
in this context.
Observe that irregular shadow mapping effectively mimics

shadow generation by ray tracing. Points P match the intersection
points between eye rays and scene geometry; and steps 2, 4 and 6
imitate light ray computation. Unlike ray tracing, irregular shadow
mapping is an object-order algorithm, which means that primitives
are processed in the order submitted by the application. In this
way, our approach combines the image quality and sampling char-
acteristics of ray-traced shadows with the system organization and
performance characteristics of Z-buffer rendering.

4.1 Image Quality

We compare the quality of images produced by irregular shadow
mapping to that of several other approaches. Figure 1 shows that
images generated using irregular shadow mapping are visually in-
distinguishable from those produced by the shadow volumes tech-
nique. Figure 7 shows that irregular shadow mapping eliminates
shadow aliasing artifacts commonly associated with conventional
shadow mapping. In Figure 8 we use an L2 norm to compare
quantitatively the image quality of our approach to that of three
other approaches. Our quantitative comparison is made against
ray-traced shadows and against two other shadow mapping algo-
rithms that avoid object-space computations: conventional shadow
mapping [Williams 1978] and adaptive shadow mapping [Fernando
et al. 2001]. This figure illustrates that the number of shadow map
samples required to attain high fidelity is much less than that re-
quired by these other shadow mapping techniques.
Our conventional and adaptive implementations include stan-

dard enhancements to reduce self-shadowing and shadow alias-
ing artifacts. These enhancements include percentage closer filter-
ing (PCF) [Reeves et al. 1987], object IDs [Hourcade and Nicolas
1985] and orientation-dependent bias values like those computed by
glPolygonOffset [OpenGL Architectural Review Board 2003].

Pworld

Pproj
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Shadows computed using shadow map 

Correct hard shadows 
(result from computing shadow directly using ray 
tracing)

Shadow aliasing due to shadow map undersampling
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Next time: spatial acceleration data structures
Testing every primitive in scene to find ray-scene intersection 
is slow! 
Consider linearly scanning through a list vs. binary search 

- can apply this same kind of thinking to geometric queries
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