
Interactive Computer Graphics
Stanford CS248, Winter 2020

Geometric Queries
Lecture 8:

Stanford CS248, Winter 2020

Tunes

Cake
“The Distance”

(Fashion Nugget)

“After understand the vector form of point-line and point-plane distance
computations, I decided to write a song. ”

- John McCrea

Stanford CS248, Winter 2020

Geometric queries — motivation

Intersecting triangles (collisions)

Intersecting rays and triangles
(ray tracing)

Closest point on surface queries

Stanford CS248, Winter 2020

Example: closest point queries
Q: Given a point, in space (e.g., a new sample point), how do
we find the closest point on a given surface?
Q: Does implicit/explicit representation make this easier?
Q: Does our half-edge data structure help?
Q: What’s the cost of the naïve algorithm?
Q: How do we find the distance to a single triangle anyway?

p

???

Stanford CS248, Winter 2020

Many types of geometric queries
Plenty of other things we might like to know:

- Do two triangles intersect?

- Are we inside or outside an object?

- Does one object contain another?

- ...

Data structures we’ve seen so far not really designed for this...
Need some new ideas!
TODAY: come up with simple (aka: slow) algorithms
NEXT TIME: intelligent ways to accelerate geometric queries

Stanford CS248, Winter 2020

Warm up: closest point on point
Given a query point (p1,p2), how do we find the closest point
on the point (a1,a2)?

(p1, p2)

(a1, a2)

Bonus question: what’s the distance?

Stanford CS248, Winter 2020

Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal
How do I find the point on line closest to my query point p?

p
NTx = cN

Many ways to do it:

Stanford CS248, Winter 2020

p
p

p

p

p

p

p
p p

Harder: closest point on line segment
Two cases: endpoint or interior
Already have basic components:

- point-to-point

- point-to-line
Algorithm?

- find closest point on line

- check if it is between endpoints

- if not, take closest endpoint
How do we know if it’s between endpoints?

- write closest point on line as a+t(b-a)

- if t is between 0 and 1, it’s inside the segment!

a

b

Stanford CS248, Winter 2020

Even harder: closest point on triangle in 2D
What are all the possibilities for the closest point?

Q: What about a point inside the triangle?

Almost just minimum distance to three line segments:

Stanford CS248, Winter 2020

Closest point on triangle in 3D
Not so different from 2D case
Algorithm:

- Project point onto plane of triangle

- Use half-space tests to classify point (vs. half plane)

- If inside the triangle, we’re done!

- Otherwise, find closest point on associated vertex or edge

By the way, how do we find closest point on plane?
Same expression as closest point on a line! p + (c - NTp) N

Stanford CS248, Winter 2020

p

Closest point on triangle mesh in 3D?
Conceptually easy:

- loop over all triangles

- compute closest point to current triangle

- keep globally closest point
Q: What’s the cost?
What if we have billions of faces?
NEXT TIME: Better data structures!

Stanford CS248, Winter 2020

Closest point to implicit surface?
If we change our representation of geometry, algorithms can change
completely
E.g., how might we compute the closest point on an implicit surface
described via its distance function?

One idea:
- start at the query point
- compute gradient of distance

(using, e.g., finite differences)
- take a little step (decrease

distance)
- repeat until we’re at the surface

(zero distance)

Better yet: just store closest point for
each grid cell! (speed/memory trade off)

Stanford CS248, Winter 2020

Different query: ray-mesh intersection
A “ray” is an oriented line starting at a point
Think about a ray of light traveling from the sun
Want to know where a ray pierces a surface
Why?

- GEOMETRY: inside-outside test

- RENDERING: visibility, ray tracing

- ANIMATION: collision detection
Might pierce surface in many places!

Stanford CS248, Winter 2020

Ray equation
Can express ray as

“time”
point along ray

origin unit direction

Stanford CS248, Winter 2020

Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0
Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o + td
Idea: replace “x” with “r” in 1st equation, and solve for t
Example: unit sphere quadratic formula:

Why two solutions?
o

d
|d|2 = 1Note: since d is a unit vector

Stanford CS248, Winter 2020

Now solve for t:

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c

- N - unit normal

- c - offset
How do we find intersection with ray r(t) = o + td?

Key idea: again, replace the point x with the ray equation t:

Stanford CS248, Winter 2020

Ray-triangle intersection
Triangle is in a plane...
Algorithm:

- Compute ray-plane intersection

- Q: What do we do now?

Stanford CS248, Winter 2020

Barycentric coordinates (as ratio of areas)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed

by points: a, b, x

Stanford CS248, Winter 2020

Ray-triangle intersection
Algorithm:
- Compute ray-plane intersection
- Q: What do we do now?
- A: Compute barycentric coordinates of hit point?
- If barycentric coordinates are all positive, point is in triangle

Many different techniques if you care about efficiency

Stanford CS248, Winter 2020

Another way: ray-triangle intersection

▪ Parameterize triangle given by vertices using
barycentric coordinates

p0,p1,p2

▪ Can think of a triangle as an affine map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2

Stanford CS248, Winter 2020

Another way: ray-triangle intersection

p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0) transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be
orthogonal to plane. It’s a point in 2D triangle test now!

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t: ⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0

Stanford CS248, Winter 2020

One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself?
ANIMATION: How do we know if a collision occurred?

Stanford CS248, Winter 2020

Warm up: point-point intersection
Q: How do we know if p intersects a?
A: ...check if they’re the same point!

(p1, p2)

(a1, a2)

Stanford CS248, Winter 2020

Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line?
A: ...plug it into the line equation!

p
NTx = c

Stanford CS248, Winter 2020

Line-line intersection
Two lines: ax=b and cx=d
Q: How do we find the intersection?
A: See if there is a simultaneous solution
Leads to linear system:

Stanford CS248, Winter 2020

Degenerate line-line intersection?
What if lines are almost parallel?
Small change in normal can lead to big change in intersection!
Instability very common, very important with geometric
predicates. Demands special care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates”

Stanford CS248, Winter 2020

Triangle-triangle intersection?
Lots of ways to do it
Basic idea:

- Q: Any ideas?

- One way: reduce to edge-triangle intersection

- Check if each line passes through plane (ray-triangle)

- Then do interval test
What if triangle is moving?

- Important case for animation

- Can think of triangles as prisms in time

- Turns dynamic problem (in nD + time) into purely
geometric problem in (n+1)-dimensions

Stanford CS248, Winter 2020

Ray-scene intersection
Given a scene defined by a set of N primitives and a ray r, find the
closest point of intersection of r with the scene

p_closest = NULL
t_closest = inf
for each primitive p in scene:
 t = p.intersect(r)
 if t >= 0 && t < t_closest:
 t_closest = t
 p_closest = p

“Find the first primitive the ray hits”

O(N)Complexity?
Can we do better? Of course… but you’ll
have to wait until next class

(Assume p.intersect(r) returns value of t corresponding to
the point of intersection with ray r)

Stanford CS248, Winter 2020

Rendering via ray casting:
(one common use of ray-scene intersection tests)

Stanford CS248, Winter 2020

Rasterization and ray casting are two
algorithms for solving the same problem:

determining “visibility from a camera”

Stanford CS248, Winter 2020

Recall triangle visibility:

Question 1: what samples does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to the
camera in each sample? (“occlusion”)

Sample

Stanford CS248, Winter 2020

The visibility problem
What scene geometry is visible at each screen sample?
- What scene geometry projects onto screen sample points? (coverage)
- Which geometry is visible from the camera at each sample? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

x/z
-z axis

x-axis

Stanford CS248, Winter 2020

Basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer
initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles
 t_proj = project_triangle(t)
 for each 2D sample s in frame buffer: // loop 2: over visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are
distributed uniformly on screen)

More efficient hierarchical rasterization:
For each TILE of image
 If triangle overlaps tile, check all samples in tile

Stanford CS248, Winter 2020

The visibility problem (described differently)
In terms of casting rays from the camera:
- Is a scene primitive hit by a ray originating from a point on the virtual

sensor and traveling through the aperture of the pinhole camera?
(coverage)

- What primitive is the first hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS248, Winter 2020

Basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.min_t = INFINITY // only store closest-so-far for current ray
 r.tri = NULL;
 for each triangle tri in scene: // loop 2: over triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.min_t)
 update r.min_t and r.tri = tri;
 }
 color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”

Stanford CS248, Winter 2020

Basic rasterization vs. ray casting
Rasterization:
- Proceeds in triangle order (for all triangles)
- Store entire depth buffer (requires access to 2D array of fixed size)
- Do not have to store entire scene geometry in memory

- Naturally supports unbounded size scenes

Ray casting:
- Proceeds in screen sample order (for all rays)

- Do not have to store closest depth so far for the entire screen (just the
current ray)

- This is the natural order for rendering transparent surfaces (process
surfaces in the order the are encountered along the ray: front-to-back)

- Must store entire scene geometry for fast access

Stanford CS248, Winter 2020

In other words…
Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin
- Rays are distributed uniformly in plane of projection

(Note: not uniform distribution in angle… angle between rays is smaller
away from view direction)

Stanford CS248, Winter 2020

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What reflection is visible on a surface?

Generality of ray-scene queries

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of
uniformly distributed rays originating from the same point (most often: the camera)

Virtual
Sensor

Stanford CS248, Winter 2020

Shadows

Image credit: Grand Theft Auto V

Stanford CS248, Winter 2020

How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an
algorithm for ray-scene
intersection…

Stanford CS248, Winter 2020

A simple shadow computation algorithm
Trace ray from point P to
location Li of light source

If ray hits scene object
before reaching light
source… then P is in
shadow

x

P

L1

L2

Stanford CS248, Winter 2020

Direct illumination + reflection + transparency

Image credit: Henrik Wann Jensen

Stanford CS248, Winter 2020

Global illumination solution

Image credit: Henrik Wann Jensen

Stanford CS248, Winter 2020

Direct illumination

p

Stanford CS248, Winter 2020

Sixteen-bounce global illumination

p

Stanford CS248, Winter 2020

Recall rasterization / ray casting relationship
Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin
- Rays are distributed uniformly in plane of projection

(Note: not uniform distribution in angle… angle between rays is
smaller away from view direction)

Stanford CS248, Winter 2020

Shadow mapping: ray origin for rasterization
need not be the scene’s camera position

Image credits: Segal et al. 92, NVIDIA

“Shadow map” = depth map from perspective of a point light.
(Stores closest intersection along each shadow ray in a texture)

[Williams 78]

Raytracing [Whitted 1980] and related techniques can accurately
render a variety of global illumination effects including hard shad-
ows. It is possible that real-time rendering systems will eventually
adopt raytracing techniques. However, even with recent progress in
this area [Wald et al. 2003], rendering performance remains inade-
quate for scenes containing deformable objects.
Shadow mapping [Williams 1978] and many of its variants

[Hourcade and Nicolas 1985; Fernando et al. 2001] leverage ex-
isting Z-buffer hardware to render shadows with high performance
for complex scenes. However, existing versions of the technique are
prone to sampling and self-shadowing artifacts that are sufficiently
serious to limit the technique’s use in real applications.
Figure 4 (left) illustrates the shadow map algorithm. The scene

is rendered first from the light position (yielding Znear values) and
then rendered from the eye position. Each pixel in the eye view is
treated as a 3-space point positioned according to its X / Y posi-
tion in the image plane and its Z value (from the depth buffer), and
is transformed into light space. This transformation yields a point
P in light space and a distance ZP between P and the light-view
image plane. The original eye-space pixel is considered to be in
shadow iff Znear ZP, using an estimated Znear value. The algo-
rithm estimates Znear from the Znear values of one or more light-
view sample(s) that are nearest to the projection of point P onto the
light-view image plane. This estimation step is the primary cause
of artifacts produced by the technique as the estimation error is gen-
erally unbounded.
Most recent efforts to reduce these artifacts have taken one of two

approaches. The first is to use additional information from object-
space silhouette computations to reduce or eliminate estimation er-
rors for the most common cases [Sen et al. 2003]. This approach
seems to be the most successful at reducing the incidence of esti-
mation artifacts, but sharp corners and details are often truncated or
lost due to limited precision in the contours used to represent the
silhouettes. Also, the need for object-space computation introduces
additional complexity into the rendering system. The second ap-
proach is to adapt the sampling rate in the light-view image plane to
the characteristics of the scene [Fernando et al. 2001; Stamminger
and Drettakis 2002], thereby reducing the average distance between
a projection of P and the nearest sample point. Fernando et al. [Fer-
nando et al. 2001] replace the standard light view image with an
adaptive image hierarchy. This focus on improving shadow quality
through strategic placement of shadow map sample points is simi-
lar to our own, but we take this approach to its logical extreme by
placing sample points in their ideal locations.

4 Irregular Shadow Mapping

Pseudocode for irregular shadow mapping is shown in Figure 5.
The scene is first rendered from the eye point. As in conventional
shadow mapping, pixels (at the Z values given by the Z-buffer) are
transformed into light space, yielding P and ZP. Unlike conven-
tional shadow mapping, scene geometry is then rasterized to sam-
ple positions in the light view image plane given by the projec-
tion of the transformed pixels, yielding Znear. As before, a pixel
is in shadow iff Znear ZP. Note that irregular shadow maps are
view-dependent. Samples are computed in the shadow map plane
precisely where required by pixels in the eye view. Therefore, no
mismatch exists between the sampling rates or sample positions in
eye and light space. Aliasing and self-shadowing are avoided, and
no unnecessary samples are computed. Moreover, given points P
prior to rasterization in light space, and the property that Znear is
always less than or equal to ZP, we can maximize our use of the
available Z-buffer precision.
Figure 6 plots the location of sample points within irregular

shadow maps for the Doom 3 scene from Figure 1. The density of
sample points varies significantly across the image plane, demon-

Figure 4: Conventional (left) and irregular (right) shadow map-
ping. In the case of the former, the scene is rendered to a conven-
tional Z-buffer from the light, and then from the eye. With the latter,
the scene is rendered to a conventional Z-buffer from the eye, and
to an irregular Z-buffer from the light.

strating the importance of adaptive and irregular sampling methods
in this context.
Observe that irregular shadow mapping effectively mimics

shadow generation by ray tracing. Points P match the intersection
points between eye rays and scene geometry; and steps 2, 4 and 6
imitate light ray computation. Unlike ray tracing, irregular shadow
mapping is an object-order algorithm, which means that primitives
are processed in the order submitted by the application. In this
way, our approach combines the image quality and sampling char-
acteristics of ray-traced shadows with the system organization and
performance characteristics of Z-buffer rendering.

4.1 Image Quality

We compare the quality of images produced by irregular shadow
mapping to that of several other approaches. Figure 1 shows that
images generated using irregular shadow mapping are visually in-
distinguishable from those produced by the shadow volumes tech-
nique. Figure 7 shows that irregular shadow mapping eliminates
shadow aliasing artifacts commonly associated with conventional
shadow mapping. In Figure 8 we use an L2 norm to compare
quantitatively the image quality of our approach to that of three
other approaches. Our quantitative comparison is made against
ray-traced shadows and against two other shadow mapping algo-
rithms that avoid object-space computations: conventional shadow
mapping [Williams 1978] and adaptive shadow mapping [Fernando
et al. 2001]. This figure illustrates that the number of shadow map
samples required to attain high fidelity is much less than that re-
quired by these other shadow mapping techniques.
Our conventional and adaptive implementations include stan-

dard enhancements to reduce self-shadowing and shadow alias-
ing artifacts. These enhancements include percentage closer filter-
ing (PCF) [Reeves et al. 1987], object IDs [Hourcade and Nicolas
1985] and orientation-dependent bias values like those computed by
glPolygonOffset [OpenGL Architectural Review Board 2003].

1. Place camera at position of a point light source
2. Render scene to compute depth to closest object to light along

uniformly distributed “shadow rays” (answer stored in depth buffer)
3. Store precomputed shadow ray intersection results in a texture

Precomputed
shadow rays

Stanford CS248, Winter 2020

Shadow texture lookup approximates visibility
result when shading fragment at P

P

L1 Precomputed shadow rays shown in red:
Distance to closest object in scene is precomputed
and stored in texture map (“shadow map”)

Stanford CS248, Winter 2020

Shadow mapping pseudocode
(this logic would be implemented in fragment shader)

Given world-space point Pworld, light
position (L), and light direction (D)
Transform P into “light space”, defined
by light position at origin and -Z
aligned with D
Project transformed P into Pproj
Lookup value in shadow map at
(Pproj.x, Pproj.y)
If value from shadow map is less than
|L-P|, then point P is in shadow

Raytracing [Whitted 1980] and related techniques can accurately
render a variety of global illumination effects including hard shad-
ows. It is possible that real-time rendering systems will eventually
adopt raytracing techniques. However, even with recent progress in
this area [Wald et al. 2003], rendering performance remains inade-
quate for scenes containing deformable objects.
Shadow mapping [Williams 1978] and many of its variants

[Hourcade and Nicolas 1985; Fernando et al. 2001] leverage ex-
isting Z-buffer hardware to render shadows with high performance
for complex scenes. However, existing versions of the technique are
prone to sampling and self-shadowing artifacts that are sufficiently
serious to limit the technique’s use in real applications.
Figure 4 (left) illustrates the shadow map algorithm. The scene

is rendered first from the light position (yielding Znear values) and
then rendered from the eye position. Each pixel in the eye view is
treated as a 3-space point positioned according to its X / Y posi-
tion in the image plane and its Z value (from the depth buffer), and
is transformed into light space. This transformation yields a point
P in light space and a distance ZP between P and the light-view
image plane. The original eye-space pixel is considered to be in
shadow iff Znear ZP, using an estimated Znear value. The algo-
rithm estimates Znear from the Znear values of one or more light-
view sample(s) that are nearest to the projection of point P onto the
light-view image plane. This estimation step is the primary cause
of artifacts produced by the technique as the estimation error is gen-
erally unbounded.
Most recent efforts to reduce these artifacts have taken one of two

approaches. The first is to use additional information from object-
space silhouette computations to reduce or eliminate estimation er-
rors for the most common cases [Sen et al. 2003]. This approach
seems to be the most successful at reducing the incidence of esti-
mation artifacts, but sharp corners and details are often truncated or
lost due to limited precision in the contours used to represent the
silhouettes. Also, the need for object-space computation introduces
additional complexity into the rendering system. The second ap-
proach is to adapt the sampling rate in the light-view image plane to
the characteristics of the scene [Fernando et al. 2001; Stamminger
and Drettakis 2002], thereby reducing the average distance between
a projection of P and the nearest sample point. Fernando et al. [Fer-
nando et al. 2001] replace the standard light view image with an
adaptive image hierarchy. This focus on improving shadow quality
through strategic placement of shadow map sample points is simi-
lar to our own, but we take this approach to its logical extreme by
placing sample points in their ideal locations.

4 Irregular Shadow Mapping

Pseudocode for irregular shadow mapping is shown in Figure 5.
The scene is first rendered from the eye point. As in conventional
shadow mapping, pixels (at the Z values given by the Z-buffer) are
transformed into light space, yielding P and ZP. Unlike conven-
tional shadow mapping, scene geometry is then rasterized to sam-
ple positions in the light view image plane given by the projec-
tion of the transformed pixels, yielding Znear. As before, a pixel
is in shadow iff Znear ZP. Note that irregular shadow maps are
view-dependent. Samples are computed in the shadow map plane
precisely where required by pixels in the eye view. Therefore, no
mismatch exists between the sampling rates or sample positions in
eye and light space. Aliasing and self-shadowing are avoided, and
no unnecessary samples are computed. Moreover, given points P
prior to rasterization in light space, and the property that Znear is
always less than or equal to ZP, we can maximize our use of the
available Z-buffer precision.
Figure 6 plots the location of sample points within irregular

shadow maps for the Doom 3 scene from Figure 1. The density of
sample points varies significantly across the image plane, demon-

Figure 4: Conventional (left) and irregular (right) shadow map-
ping. In the case of the former, the scene is rendered to a conven-
tional Z-buffer from the light, and then from the eye. With the latter,
the scene is rendered to a conventional Z-buffer from the eye, and
to an irregular Z-buffer from the light.

strating the importance of adaptive and irregular sampling methods
in this context.
Observe that irregular shadow mapping effectively mimics

shadow generation by ray tracing. Points P match the intersection
points between eye rays and scene geometry; and steps 2, 4 and 6
imitate light ray computation. Unlike ray tracing, irregular shadow
mapping is an object-order algorithm, which means that primitives
are processed in the order submitted by the application. In this
way, our approach combines the image quality and sampling char-
acteristics of ray-traced shadows with the system organization and
performance characteristics of Z-buffer rendering.

4.1 Image Quality

We compare the quality of images produced by irregular shadow
mapping to that of several other approaches. Figure 1 shows that
images generated using irregular shadow mapping are visually in-
distinguishable from those produced by the shadow volumes tech-
nique. Figure 7 shows that irregular shadow mapping eliminates
shadow aliasing artifacts commonly associated with conventional
shadow mapping. In Figure 8 we use an L2 norm to compare
quantitatively the image quality of our approach to that of three
other approaches. Our quantitative comparison is made against
ray-traced shadows and against two other shadow mapping algo-
rithms that avoid object-space computations: conventional shadow
mapping [Williams 1978] and adaptive shadow mapping [Fernando
et al. 2001]. This figure illustrates that the number of shadow map
samples required to attain high fidelity is much less than that re-
quired by these other shadow mapping techniques.
Our conventional and adaptive implementations include stan-

dard enhancements to reduce self-shadowing and shadow alias-
ing artifacts. These enhancements include percentage closer filter-
ing (PCF) [Reeves et al. 1987], object IDs [Hourcade and Nicolas
1985] and orientation-dependent bias values like those computed by
glPolygonOffset [OpenGL Architectural Review Board 2003].

Pworld

Pproj

Stanford CS248, Winter 2020Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map

Correct hard shadows
(result from computing shadow directly using ray
tracing)

Shadow aliasing due to shadow map undersampling

Stanford CS248, Winter 2020

Next time: spatial acceleration data structures
Testing every primitive in scene to find ray-scene intersection
is slow!
Consider linearly scanning through a list vs. binary search

- can apply this same kind of thinking to geometric queries

Stanford CS248, Winter 2020

Acknowledgements
Thanks to Keenan Crane for presentation resources

