
Interactive Computer Graphics 
Stanford CS248, Winter 2020

Lecture 5:

The Rasterization Pipeline 
(and its implementation on GPUs)
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Tunes

Amy Winehouse 
“Back to Black” 

(Back to Black)

“It’s what happens to your silhouettes when you forget to use premultiplied alpha.” 
- Amy Winehouse
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What you know how to do (at this point in the course)

Position objects and the 
camera in the world

z
x

y
z

x

y

Determine the position of 
objects relative to the camera 

Project objects onto 
the screen

(0, 0)

(w, h)

Sample triangle coverage Compute triangle attribute 
values at covered sample points 

(Color, texture coords, depth)

Sample texture maps
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Texture mapping review
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Per-vertex information
▪ Inputs: 

- Per-vertex position [x,y,z] 
- Per-vertex texture coordinates [u,v]

u

v

Defines mapping from 
domain of surface, to 

domain of texture map

(u=0.4, v=0.7)
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UV at       is linear combination of UV at three 
triangle vertices.

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz
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Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤
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2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
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Px =
⇥
xx xy xz xz
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x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Linearly interpolate texture coordinate samples

x2D =
⇥
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x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c
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                                               form a non-orthogonal 
basis for points in triangle (origin at      )
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xuv = ↵auv + �buv + �cuv
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Barycentric coordinates as ratio of areas
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Barycentric coordinates as ratio of signed areas:

Given XYZ positions of triangle vertices, 
compute barycentric coordinates…
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Interpolating texture coordinates in 2D
▪ But consider assignment 1…  

▪ You are given 2D position of triangle coordinates, and you 
have to sample coverage (and now UV) at a given 2D screen 
point (X,Y)
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Perspective incorrect interpolation
The value of an attribute at the 3D point P on a triangle is a linear combination of attribute 
values at vertices. 

But due to perspective projection, barycentric interpolation of values on a triangle with 
vertices of different depths is not affine in 2D screen XY coordinates

Screen

(attribute value = A0)

P = (P0 + P1) / 2

P0

P1 (attribute value = A1)

(attribute value = (A0 + A1) / 2)

proj(P0)

proj(P1)

In this example, the 2D screen point proj(P) with 
attribute value (A0 + A1) / 2 is not halfway between the 
2D screen points proj(P0) and proj(P1). 

proj(P)

Similarly, the attribute’s value at Pmid = (proj(P0) +  proj(P1)) / 2 is not (A0 + A1) / 2. 

Pmid
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Perspective project P, get 2D homogeneous representation:

Perspective-correct interpolation
Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point                                      is:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

2

664

x
y
z
z

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

2

664

x
y
z
1

3

775

2

4
x2D�H

y2D�H

w

3

5

Drop z to 
move to 2D-H

point P in 3D-HSimple perspective 
projection matrix * 

projection of P 
in 2D-H

So …           is affine function of 2D 

screen coordinates:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

Then plug back in to equation for f at top of slide…
f(x2D�H, y2D�H) = ax2D�H + by2D�H + cw

f(x2D�H, y2D�H)

w
=

a

w
x2D�H +

b

w
y2D�H + c

f(x2D, y2D)

w
=

a

w
x2D +

b

w
y2D + c

* Note: using a more general perspective 
projection matrix only changes the 
coefficient in front of x2d and y2d . 
(property that f/w is affine still holds)

perspective projection 
of P in 3D-H
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Direct evaluation of surface attributes
For any surface attribute (with value defined at triangle vertices as:                     )

3 equations, solve for 3 unknowns (A, B, C)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect
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b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

f = fa, fb, fc

fa = Aax +Bay + C

fb = Abx +Bby + C

fc = Acx +Bcy + C

kEac(bx,by) = 1

kEac(xx,xy) = �

� =
(ay � cy)xx + (cx � ax)xy + axcy � cxay
(ay � cy)bx + (cx � ax)by + axcy � cxay

� =
Eac(xx,xy)

Eac(bx,by)

� = c1

� = c2

2

This is done as a per triangle “setup” computation prior to sampling, just 
like you computed edge equations for evaluating coverage.

value of attribute at vertex a

projected 2D position 
of vertex a 

w coordinate of vertex a after 
perspective projection transform

fa
wa

= Aax +Bay + C

fb
wb

= Abx +Bby + C

fc
wc

= Acx +Bcy + C
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Efficient perspective-correct interpolation
Attribute values vary linearly across triangle in 3D, but not in projected screen XY  
Projected attribute values (f/w) are affine functions of screen XY!  

To evaluate surface attribute f at every covered sample: 

Evaluate 1/w (x,y)                                                       (from precomputed equation for value 1/w) 

Reciprocate 1/w (x,y) to get w(x,y) 

For each triangle attribute: 

 Evaluate f/w (x,y)                                              (from precomputed equation for value  f/w) 

 Multiply f/w (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute  f  that varies linearly across triangle:  
e.g., color, depth, texture coordinates
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What else do you need to know to render a picture 
like this?

Occlusion
Determining which surface is 
visible to the camera at each 
sample point

Lighting/materials

Surface representation
How to represent complex 
surfaces?

Describing lights in scene and 
how materials reflect light.
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Course roadmap: what’s coming…
Introduction

Drawing a triangle (by sampling)

Transforms and coordinate spaces

Perspective projection and texture sampling

Today: putting it all together: end-to-end 
rasterization pipeline

Geometry 
Processing

Materials and Lighting

Drawing Things

Sampling (and anti-aliasing) 
Coordinate Spaces and Transforms 
Rasterization and texturing via sampling

Key concepts:

Midterm
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Occlusion using the Depth Buffer
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Occlusion: which triangle is visible at each 
covered sample point? 

Opaque Triangles 50% transparent triangles
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Depth buffer (aka “Z buffer”)

Depth buffer: 
(stores depth per sample) 

Stores depth of closest surface 
drawn so far 
black = close depth 
white = far depth

Color buffer: 
(stores color per sample… 
e.g., RGB)
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Depth buffer (a better look)

Color buffer (stores color measurement per sample, eg., RGB value per sample)
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Depth buffer (a better look)

Corresponding depth buffer after rendering all triangles 
(stores closest scene depth per sample)
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Occlusion using the depth-buffer (“Z-buffer”)

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

For each coverage sample point, the depth-buffer stores depth of closest 
triangle at this sample point that has been processed by the renderer so far.

Black = small distance

White = large distance

Grayscale value of sample point 
used to indicate distance

Initial state of depth buffer 
before rendering any triangles 
(all samples store farthest distance)
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Review from last class

Assume we have a triangle defined by the screen-space 2D position and 
distance (“depth”) from the camera of each vertex.    

How do we compute the depth of the triangle at covered sample point              ?

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤
, d0

⇥
p1x p1y

⇤
, d1

⇥
p2x p2y

⇤
, d2

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Interpolate it just like any other attribute that varies linearly over the surface 
of the triangle.
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Example: rendering three opaque triangles
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Depth buffer contents

Processing yellow triangle: 
depth = 0.5

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Red = samples that pass depth test

Occlusion using the depth-buffer (Z-buffer)
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Depth buffer contents

After processing yellow triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

Processing blue triangle: 
depth = 0.75

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

After processing blue triangle: 

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

Processing red triangle: 
depth = 0.25

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

After processing red triangle: 

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Occlusion using the depth buffer 
(opaque surfaces)

bool pass_depth_test(d1, d2) { 
   return d1 < d2;    
}  

depth_test(tri_d, tri_color, x, y) { 

  if (pass_depth_test(tri_d, depth_buffer[x][y]) { 

    // triangle is closest object seen so far at this 
    // sample point. Update depth and color buffers.   

    depth_buffer[x][y] = tri_d;   // update depth_buffer 
    color[x][y] = tri_color;      // update color buffer 
  } 
} 
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Does depth-buffer algorithm handle 
interpenetrating surfaces?
Of course! 
Occlusion test is based on depth of triangles at a given sample point.  The 
relative depth of triangles may be different at different sample points.

Green triangle in 
front of yellow 
triangle

Yellow triangle in 
front of green 
triangle
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Does depth-buffer algorithm handle 
interpenetrating surfaces?
Of course! 
Occlusion test is based on depth of triangles at a given sample point.  The 
relative depth of triangles may be different at different sample points.
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Does depth buffer work with super sampling? 
Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle
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Color buffer contents
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Color buffer contents (4 samples per pixel)
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Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.
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Summary: occlusion using a depth buffer
▪ Store one depth value per coverage sample (not per pixel!) 

▪ Constant space per sample 
- Implication: constant space for depth buffer 

▪ Constant time occlusion test per covered sample 
- Read-modify write of depth buffer if “pass” depth test 
- Just a depth buffer read if “fail”  

▪ Not specific to triangles: only requires that surface depth can be 
evaluated at a screen sample point

But what about semi-transparent surfaces?
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Compositing
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Representing opacity as alpha
Alpha describes the opacity of an object 
- Fully opaque surface:  α = 1 
- 50% transparent surface: α = 0.5 
- Fully transparent surface:  α = 0

α = 1 α =0α = 0.75 α = 0.5 α = 0.25

Red triangle with decreasing opacity
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Alpha: coverage analogy
▪ Can think of alpha as describing the opacity of a semi-

transparent surface 
▪ Or… as partial coverage by fully opaque object  

- consider a screen door

α = 0.5

(Squint at this slide and the scene on the left and the right will appear similar)
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Alpha: additional channel of image (rgba)

α of foreground object  
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Over operator:
Composite image B with opacity αB over image A with opacity αA

B over A

B
A

B
A

A over B

A over B  !=  B over A 
“Over” is not commutative

Koala over NYC
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Over operator: non-premultiplied alpha
Composite image B with opacity αB over image A with opacity αA 

First attempt: (represent colors as 3-vectors, alpha separately)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Appearance of 
semi-transparent B

B over A

B
A

B A

A over BWhat B lets through

Appearance of semi-
transparent A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

A over B  !=  B over A

Composited color:

“Over” is not commutativeComposite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A
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Premultiplied alpha
▪ Represent (potentially transparent) color as a 4-vector where 

RGB values have been premultiplied by alpha

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Example: 50% opaque red  
[0.5, 0.0, 0.0, 0.5]

Example: 75% opaque magenta  
[0.75, 0.0, 0.75, 0.75]



Stanford CS248, Winter 2020

Over operator: using premultiplied alpha
Composite image B with opacity αB over image A with opacity αA

B over A

B
A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Non-premultiplied alpha representation:

Premultiplied alpha representation:

Composite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

one multiply, one add

two multiplies, one add 
(referring to vector ops on colors)

Notice premultiplied alpha composites alpha 
just like how it composites rgb.
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Fringing
Poor treatment of color/alpha can yield dark “fringing”:

foreground color foreground alpha background color

fringing no fringing
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No fringing
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Fringing (…why does this happen?)
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A problem with non-premultiplied alpha
▪ Suppose we upsample an image w/ an alpha mask, then composite it onto a background 
▪ How should we compute the interpolated color/alpha values? 
▪ If we interpolate color and alpha separately, then blend using the non-premultiplied 

“over” operator, here’s what happens:

original 
color

original 
alpha

upsampled 
color

upsampled 
alpha

composited onto 
yellow background

Notice black “fringe” that occurs because 
we’re blending, e.g., 50% blue pixels using 
50% alpha, rather than, 100% blue pixels 
with 50% alpha.
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Eliminating fringe w/ premultiplied “over”
If we instead use  the premultiplied “over” operation, we get the correct alpha:

upsampled color

+ =

(1-alpha)*background composite image 
w/ no fringe

background(1-alpha)
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Another problem with non-premultiplied alpha
Consider pre-filtering a texture with an alpha matte

Desired filtered result

input color input α filtered result 
composited over white

filtered color filtered α 
Downsampling non-premultiplied alpha 

image results in 50% opaque brown)

Result of filtering 
premultiplied  image

0.25 * ((0, 1, 0, 1) + (0, 1, 0, 1) + 

               (0, 0, 0, 0) + (0, 0, 0, 0)) = (0, 0.5, 0, 0.5)  

α
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Common use of textures with alpha: foliage

[Image credit: SpeedTree Cinema 8]
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Foliage example

[Image credit: SpeedTree Cinema 8]
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Another problem: applying “over” repeatedly
Consider composite image C with opacity αC  over B with opacity αB over image A with 
opacity αA

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Consider first step of of compositing 50% red over 50% red: C over B over A

B A

C

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

Wait… this result is the premultiplied color! 
So “over” for non-premultiplied alpha takes non-premultiplied colors to 
premultiplied colors (“over” operation is not closed) 

Cannot compose “over” operations on non-premultiplied values: 
 over(C, over(B, A))

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

There is a closed form for non-premultiplied alpha:
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Summary: advantages of premultiplied alpha
▪ Simple: compositing operation treats all channels (rgb and a) 

the same 

▪ Closed under composition 

▪ Better representation for filtering textures with alpha 
channel 

▪ More efficient than non-premultiplied representation: “over” 
requires fewer math ops
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Color buffer update: semi-transparent surfaces 

over(c1, c2) { 
   return c1 + (1-c1.a) * c2;    
}  
  
update_color_buffer(tri_z, tri_color, x, y) { 
   // Note: no depth check, no depth buffer update 
   color[x][y] = over(tri_color, color[x][y]); 
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order? 
Modify code:   over(color[x][y], tri_color)
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Putting it all together *
Consider rendering a mixture of opaque and transparent triangles
Step 1: render opaque surfaces using depth-buffered occlusion 

If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order. 
If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems a little complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering. More 
on this later in the course, and in CS348B
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Combining opaque and semi-transparent 
triangles

// phase 1: render opaque surfaces 
update_color_buffer(tri_z, tri_color, x, y) { 
   if (pass_depth_test(tri_z, zbuffer[x][y]) { 
      color[x][y] = tri_color; 
      zbuffer[x][y] = tri_z; 
   } 
} 

// phase 2: render semi-transparent surfaces 
update_color_buffer(tri_z, tri_color, x, y) { 

   if (pass_depth_test(tri_z, zbuffer[x][y]) { 
       // Note: no depth buffer update 
       color[x][y] = over(tri_color, color[x][y]); 
  } 
}

Assume: color buffer values and tri_color are represented with premultiplied alpha



Stanford CS248, Winter 2020

End-to-end rasterization pipeline 
(“real-time graphics pipeline”)
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Command: draw these triangles!

list_of_positions = { 

    v0x, v0y, v0z,  
    v1x, v1y, v1x, 
    v2x, v2y, v2z, 
    v3x, v3y, v3x, 
    v4x, v4y, v4z, 
    v5x, v5y, v5x   }; 

list_of_texcoords = { 

    v0u, v0v,  
    v1u, v1v, 
    v2u, v2v, 
    v3u, v3v, 
    v4u, v4v, 
    v5u, v5v   }; Texture map

Size of output image  (W, H)

Object-to-camera-space transform:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Perspective projection transform

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Use depth test /update depth buffer: YES!

Inputs:
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Step 1:
Transform triangle vertices into camera space 
(apply modeling and camera transform)

z

x

y
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Step 2:
Apply perspective projection transform to transform triangle vertices 
into normalized coordinate space

Pinhole 
Camera 

(0,0)

z

x

y

znear

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)
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Camera-space positions: 3D Normalized space positions

Note: I’m illustrating normalized 3D space after the 
homogeneous divide, it is more accurate to think of 
this volume in 3D-H space as defined by: 
 (-w, -w, -w, w) and (w, w, w, w)
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Step 3: clipping
▪ Discard triangles that lie complete outside the unit cube (culling) 

- They are off screen, don’t bother processing them further 

▪ Clip triangles that extend beyond the unit cube to the cube 
- Note: clipping may create more triangles 
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Triangles before clipping Triangles after clipping
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Step 4: transform to screen coordinates
Transform vertex xy positions from normalized coordinates into 
screen coordinates (based on screen w,h)

(0, 0)

(w, h)
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Step 5: setup triangle (triangle preprocessing)
Compute triangle edge equations 
Compute triangle attribute equations

Lecture 5 Math
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Step 6: sample coverage
Evaluate attributes z, u, v at all covered samples
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Step 6: compute triangle color at sample point
e.g., sample texture map *

u

v
u(x,y), v(x,y)

* So far, we’ve only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a 
texture map.  Later in the course, we’ll discuss more advanced algorithms for computing its color based on material 
properties and scene lighting conditions.
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Step 7: perform depth test (if enabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

Also update depth value at covered samples (if necessary)
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Step 8: update color buffer (if depth test passed)
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Step 9:

▪ Repeat steps 1-8 for all triangles in the scene!
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Real time graphics APIs
▪ OpenGL 

▪ Microsoft Direct3D 

▪ Apple Metal 

▪ You now know a lot about the algorithms implemented 
underneath these APIs: drawing 3D triangles (key 
transformations and rasterization), texture mapping, anti-
aliasing via supersampling, etc. 

▪ Internet is full of useful tutorials on how to program using 
these APIs
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OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized 
coordinate space 

* Several stages of the modern OpenGL pipeline are omitted

Input: vertices in 3D space
1

2

3

4

Structures rendering computation as a series of operations on vertices, primitives, 
fragments, and screen samples
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OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

* several stages of the modern OpenGL pipeline are omitted

Pipeline inputs: 
- Input vertex data 

- Parameters needed to compute position on vertices 
in normalized coordinates (e.g., transform matrices) 

- Parameters needed to compute color of fragments 
(e.g., textures)

Input vertices in 3D space
1

2

3

4

transform matrices

textures

- “Shader” programs that define behavior of vertex 
and fragment stages
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Shader programs
Define behavior of vertex processing and fragment processing stages 
Describe operation on a single vertex (or single fragment)

uniform sampler2D myTexture; 

uniform vec3 lightDir; 

varying vec2 uv; 

varying vec3 norm; 

void diffuseShader() 

{ 

  vec3 kd; 

  kd = texture2d(myTexture, uv); 

  kd *= clamp(dot(-lightDir, norm), 0.0, 1.0); 

  gl_FragColor = vec4(kd, 1.0);    

} 

Example GLSL fragment shader program

Sample surface albedo 
(reflectance color) from texture

Modulate surface albedo by incident 
irradiance (incoming light)

Shader outputs surface color

Per-fragment attributes 
(interpolated by rasterizer)

Shader function executes once 
per fragment. 

Outputs color of surface at 
sample point corresponding to 
fragment. 
(this shader performs a texture lookup to 
obtain the surface’s material color at this point, 
then performs a simple lighting computation)

Program parameters
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Texture coordinate visualization 
Defines mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel = v  
So uv=(0,0) is black, uv=(1,1) is yellow
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Rendered result
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Goal: render very high complexity 3D scenes
- 100’s of thousands to millions of triangles in a scene 
- Complex vertex and fragment shader computations 
- High resolution screen outputs (2-4 Mpixel + supersampling)  
- 30-60 fps
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Graphics pipeline implementation: GPUs
Specialized processors for executing graphics pipeline computations

Discrete GPU card 
(NVIDIA GeForce Titan X) 

Integrated GPU: part of modern Intel CPU chip



Stanford CS248, Winter 2020

GPU: heterogeneous, multi-core processor

GPU 
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function 
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~2-4 TFLOPs of performance for 
executing vertex and fragment shader programs

Take Kayvon’s Visual Computing Systems course (CS348V) for more details!
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Summary
▪ Occlusion resolved independently at each screen sample using the depth buffer 

▪ Alpha compositing for semi-transparent surfaces 

- Premultiplied alpha forms simply repeated composition 

- “Over” compositing operations is not commutative: requires triangles to be 
processed in back-to-front (or front-to-back) order 

▪ Graphics pipeline: 

- Structures rendering computation as a sequence of operations performed 
on vertices, primitives (e.g., triangles), fragments, and screen samples 

- Behavior of parts of the pipeline is application-defined using shader 
programs. 

- Pipeline operations implemented by highly, optimized parallel processors 
and fixed-function hardware (GPUs)


