
Interactive Computer Graphics
Stanford CS248, Winter 2020

Lecture 5:

The Rasterization Pipeline
(and its implementation on GPUs)

Stanford CS248, Winter 2020

Tunes

Amy Winehouse
“Back to Black”

(Back to Black)

“It’s what happens to your silhouettes when you forget to use premultiplied alpha.”
- Amy Winehouse

Stanford CS248, Winter 2020

What you know how to do (at this point in the course)

Position objects and the
camera in the world

z
x

y
z

x

y

Determine the position of
objects relative to the camera

Project objects onto
the screen

(0, 0)

(w, h)

Sample triangle coverage Compute triangle attribute
values at covered sample points

(Color, texture coords, depth)

Sample texture maps

Stanford CS248, Winter 2020

Texture mapping review

Stanford CS248, Winter 2020

Per-vertex information
▪ Inputs:

- Per-vertex position [x,y,z]
- Per-vertex texture coordinates [u,v]

u

v

Defines mapping from
domain of surface, to

domain of texture map

(u=0.4, v=0.7)

Stanford CS248, Winter 2020

UV at is linear combination of UV at three
triangle vertices.

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Linearly interpolate texture coordinate samples

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

 form a non-orthogonal
basis for points in triangle (origin at)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

and

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

xuv = ↵auv + �buv + �cuv

Stanford CS248, Winter 2020

Barycentric coordinates as ratio of areas

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Barycentric coordinates as ratio of signed areas:

Given XYZ positions of triangle vertices,
compute barycentric coordinates…

Stanford CS248, Winter 2020

Interpolating texture coordinates in 2D
▪ But consider assignment 1…

▪ You are given 2D position of triangle coordinates, and you
have to sample coverage (and now UV) at a given 2D screen
point (X,Y)

Stanford CS248, Winter 2020

Perspective incorrect interpolation
The value of an attribute at the 3D point P on a triangle is a linear combination of attribute
values at vertices.

But due to perspective projection, barycentric interpolation of values on a triangle with
vertices of different depths is not affine in 2D screen XY coordinates

Screen

(attribute value = A0)

P = (P0 + P1) / 2

P0

P1 (attribute value = A1)

(attribute value = (A0 + A1) / 2)

proj(P0)

proj(P1)

In this example, the 2D screen point proj(P) with
attribute value (A0 + A1) / 2 is not halfway between the
2D screen points proj(P0) and proj(P1).

proj(P)

Similarly, the attribute’s value at Pmid = (proj(P0) + proj(P1)) / 2 is not (A0 + A1) / 2.

Pmid

Stanford CS248, Winter 2020

Perspective project P, get 2D homogeneous representation:

Perspective-correct interpolation
Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

2

664

x
y
z
z

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

2

664

x
y
z
1

3

775

2

4
x2D�H

y2D�H

w

3

5

Drop z to
move to 2D-H

point P in 3D-HSimple perspective
projection matrix *

projection of P
in 2D-H

So … is affine function of 2D

screen coordinates:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

Then plug back in to equation for f at top of slide…
f(x2D�H, y2D�H) = ax2D�H + by2D�H + cw

f(x2D�H, y2D�H)

w
=

a

w
x2D�H +

b

w
y2D�H + c

f(x2D, y2D)

w
=

a

w
x2D +

b

w
y2D + c

* Note: using a more general perspective
projection matrix only changes the
coefficient in front of x2d and y2d .
(property that f/w is affine still holds)

perspective projection
of P in 3D-H

Stanford CS248, Winter 2020

Direct evaluation of surface attributes
For any surface attribute (with value defined at triangle vertices as:)

3 equations, solve for 3 unknowns (A, B, C)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

f = fa, fb, fc

fa = Aax +Bay + C

fb = Abx +Bby + C

fc = Acx +Bcy + C

kEac(bx,by) = 1

kEac(xx,xy) = �

� =
(ay � cy)xx + (cx � ax)xy + axcy � cxay
(ay � cy)bx + (cx � ax)by + axcy � cxay

� =
Eac(xx,xy)

Eac(bx,by)

� = c1

� = c2

2

This is done as a per triangle “setup” computation prior to sampling, just
like you computed edge equations for evaluating coverage.

value of attribute at vertex a

projected 2D position
of vertex a

w coordinate of vertex a after
perspective projection transform

fa
wa

= Aax +Bay + C

fb
wb

= Abx +Bby + C

fc
wc

= Acx +Bcy + C

Stanford CS248, Winter 2020

Efficient perspective-correct interpolation
Attribute values vary linearly across triangle in 3D, but not in projected screen XY
Projected attribute values (f/w) are affine functions of screen XY!

To evaluate surface attribute f at every covered sample:

Evaluate 1/w (x,y) (from precomputed equation for value 1/w)

Reciprocate 1/w (x,y) to get w(x,y)

For each triangle attribute:

 Evaluate f/w (x,y) (from precomputed equation for value f/w)

 Multiply f/w (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute f that varies linearly across triangle:
e.g., color, depth, texture coordinates

Stanford CS248, Winter 2020

What else do you need to know to render a picture
like this?

Occlusion
Determining which surface is
visible to the camera at each
sample point

Lighting/materials

Surface representation
How to represent complex
surfaces?

Describing lights in scene and
how materials reflect light.

Stanford CS248, Winter 2020

Course roadmap: what’s coming…
Introduction

Drawing a triangle (by sampling)

Transforms and coordinate spaces

Perspective projection and texture sampling

Today: putting it all together: end-to-end
rasterization pipeline

Geometry
Processing

Materials and Lighting

Drawing Things

Sampling (and anti-aliasing)
Coordinate Spaces and Transforms
Rasterization and texturing via sampling

Key concepts:

Midterm

Stanford CS248, Winter 2020

Occlusion using the Depth Buffer

Stanford CS248, Winter 2020

Occlusion: which triangle is visible at each
covered sample point?

Opaque Triangles 50% transparent triangles

Stanford CS248, Winter 2020

Depth buffer (aka “Z buffer”)

Depth buffer:
(stores depth per sample)

Stores depth of closest surface
drawn so far
black = close depth
white = far depth

Color buffer:
(stores color per sample…
e.g., RGB)

Stanford CS248, Winter 2020

Depth buffer (a better look)

Color buffer (stores color measurement per sample, eg., RGB value per sample)

Stanford CS248, Winter 2020

Depth buffer (a better look)

Corresponding depth buffer after rendering all triangles
(stores closest scene depth per sample)

Stanford CS248, Winter 2020

Occlusion using the depth-buffer (“Z-buffer”)

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

For each coverage sample point, the depth-buffer stores depth of closest
triangle at this sample point that has been processed by the renderer so far.

Black = small distance

White = large distance

Grayscale value of sample point
used to indicate distance

Initial state of depth buffer
before rendering any triangles
(all samples store farthest distance)

Stanford CS248, Winter 2020

Review from last class

Assume we have a triangle defined by the screen-space 2D position and
distance (“depth”) from the camera of each vertex.

How do we compute the depth of the triangle at covered sample point ?

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤
, d0

⇥
p1x p1y

⇤
, d1

⇥
p2x p2y

⇤
, d2

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Interpolate it just like any other attribute that varies linearly over the surface
of the triangle.

Stanford CS248, Winter 2020

Example: rendering three opaque triangles

Stanford CS248, Winter 2020

Depth buffer contents

Processing yellow triangle:
depth = 0.5

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = samples that pass depth test

Occlusion using the depth-buffer (Z-buffer)

Stanford CS248, Winter 2020

Depth buffer contents

After processing yellow triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248, Winter 2020

Depth buffer contents

Processing blue triangle:
depth = 0.75

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248, Winter 2020

Depth buffer contents

After processing blue triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248, Winter 2020

Depth buffer contents

Processing red triangle:
depth = 0.25

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248, Winter 2020

Depth buffer contents

After processing red triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248, Winter 2020

Occlusion using the depth buffer
(opaque surfaces)

bool pass_depth_test(d1, d2) {
 return d1 < d2;
}

depth_test(tri_d, tri_color, x, y) {

 if (pass_depth_test(tri_d, depth_buffer[x][y]) {

 // triangle is closest object seen so far at this
 // sample point. Update depth and color buffers.

 depth_buffer[x][y] = tri_d; // update depth_buffer
 color[x][y] = tri_color; // update color buffer
 }
}

Stanford CS248, Winter 2020

Does depth-buffer algorithm handle
interpenetrating surfaces?
Of course!
Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle

Stanford CS248, Winter 2020

Does depth-buffer algorithm handle
interpenetrating surfaces?
Of course!
Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Stanford CS248, Winter 2020

Does depth buffer work with super sampling?
Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle

Stanford CS248, Winter 2020

Color buffer contents

Stanford CS248, Winter 2020

Color buffer contents (4 samples per pixel)

Stanford CS248, Winter 2020

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

Stanford CS248, Winter 2020

Summary: occlusion using a depth buffer
▪ Store one depth value per coverage sample (not per pixel!)

▪ Constant space per sample
- Implication: constant space for depth buffer

▪ Constant time occlusion test per covered sample
- Read-modify write of depth buffer if “pass” depth test
- Just a depth buffer read if “fail”

▪ Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

But what about semi-transparent surfaces?

Stanford CS248, Winter 2020

Compositing

Stanford CS248, Winter 2020

Representing opacity as alpha
Alpha describes the opacity of an object
- Fully opaque surface: α = 1
- 50% transparent surface: α = 0.5
- Fully transparent surface: α = 0

α = 1 α =0α = 0.75 α = 0.5 α = 0.25

Red triangle with decreasing opacity

Stanford CS248, Winter 2020

Alpha: coverage analogy
▪ Can think of alpha as describing the opacity of a semi-

transparent surface
▪ Or… as partial coverage by fully opaque object

- consider a screen door

α = 0.5

(Squint at this slide and the scene on the left and the right will appear similar)

Stanford CS248, Winter 2020

Alpha: additional channel of image (rgba)

α of foreground object

Stanford CS248, Winter 2020

Over operator:
Composite image B with opacity αB over image A with opacity αA

B over A

B
A

B
A

A over B

A over B != B over A
“Over” is not commutative

Koala over NYC

Stanford CS248, Winter 2020

Over operator: non-premultiplied alpha
Composite image B with opacity αB over image A with opacity αA

First attempt: (represent colors as 3-vectors, alpha separately)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Appearance of
semi-transparent B

B over A

B
A

B A

A over BWhat B lets through

Appearance of semi-
transparent A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

A over B != B over A

Composited color:

“Over” is not commutativeComposite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Stanford CS248, Winter 2020

Premultiplied alpha
▪ Represent (potentially transparent) color as a 4-vector where

RGB values have been premultiplied by alpha

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Example: 50% opaque red
[0.5, 0.0, 0.0, 0.5]

Example: 75% opaque magenta
[0.75, 0.0, 0.75, 0.75]

Stanford CS248, Winter 2020

Over operator: using premultiplied alpha
Composite image B with opacity αB over image A with opacity αA

B over A

B
A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Non-premultiplied alpha representation:

Premultiplied alpha representation:

Composite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

one multiply, one add

two multiplies, one add
(referring to vector ops on colors)

Notice premultiplied alpha composites alpha
just like how it composites rgb.

Stanford CS248, Winter 2020

Fringing
Poor treatment of color/alpha can yield dark “fringing”:

foreground color foreground alpha background color

fringing no fringing

Stanford CS248, Winter 2020

No fringing

Stanford CS248, Winter 2020

Fringing (…why does this happen?)

Stanford CS248, Winter 2020

A problem with non-premultiplied alpha
▪ Suppose we upsample an image w/ an alpha mask, then composite it onto a background
▪ How should we compute the interpolated color/alpha values?
▪ If we interpolate color and alpha separately, then blend using the non-premultiplied

“over” operator, here’s what happens:

original
color

original
alpha

upsampled
color

upsampled
alpha

composited onto
yellow background

Notice black “fringe” that occurs because
we’re blending, e.g., 50% blue pixels using
50% alpha, rather than, 100% blue pixels
with 50% alpha.

Stanford CS248, Winter 2020

Eliminating fringe w/ premultiplied “over”
If we instead use the premultiplied “over” operation, we get the correct alpha:

upsampled color

+ =

(1-alpha)*background composite image
w/ no fringe

background(1-alpha)

Stanford CS248, Winter 2020

Another problem with non-premultiplied alpha
Consider pre-filtering a texture with an alpha matte

Desired filtered result

input color input α filtered result
composited over white

filtered color filtered α
Downsampling non-premultiplied alpha

image results in 50% opaque brown)

Result of filtering
premultiplied image

0.25 * ((0, 1, 0, 1) + (0, 1, 0, 1) +

 (0, 0, 0, 0) + (0, 0, 0, 0)) = (0, 0.5, 0, 0.5)

α

Stanford CS248, Winter 2020

Common use of textures with alpha: foliage

[Image credit: SpeedTree Cinema 8]

Stanford CS248, Winter 2020

Foliage example

[Image credit: SpeedTree Cinema 8]

Stanford CS248, Winter 2020

Another problem: applying “over” repeatedly
Consider composite image C with opacity αC over B with opacity αB over image A with
opacity αA

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Consider first step of of compositing 50% red over 50% red: C over B over A

B A

C

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

Wait… this result is the premultiplied color!
So “over” for non-premultiplied alpha takes non-premultiplied colors to
premultiplied colors (“over” operation is not closed)

Cannot compose “over” operations on non-premultiplied values:
 over(C, over(B, A))

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

There is a closed form for non-premultiplied alpha:

Stanford CS248, Winter 2020

Summary: advantages of premultiplied alpha
▪ Simple: compositing operation treats all channels (rgb and a)

the same

▪ Closed under composition

▪ Better representation for filtering textures with alpha
channel

▪ More efficient than non-premultiplied representation: “over”
requires fewer math ops

Stanford CS248, Winter 2020

Color buffer update: semi-transparent surfaces

over(c1, c2) {
 return c1 + (1-c1.a) * c2;
}

update_color_buffer(tri_z, tri_color, x, y) {
 // Note: no depth check, no depth buffer update
 color[x][y] = over(tri_color, color[x][y]);
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order?
Modify code: over(color[x][y], tri_color)

Stanford CS248, Winter 2020

Putting it all together *
Consider rendering a mixture of opaque and transparent triangles
Step 1: render opaque surfaces using depth-buffered occlusion

If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems a little complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering. More
on this later in the course, and in CS348B

Stanford CS248, Winter 2020

Combining opaque and semi-transparent
triangles

// phase 1: render opaque surfaces
update_color_buffer(tri_z, tri_color, x, y) {
 if (pass_depth_test(tri_z, zbuffer[x][y]) {
 color[x][y] = tri_color;
 zbuffer[x][y] = tri_z;
 }
}

// phase 2: render semi-transparent surfaces
update_color_buffer(tri_z, tri_color, x, y) {

 if (pass_depth_test(tri_z, zbuffer[x][y]) {
 // Note: no depth buffer update
 color[x][y] = over(tri_color, color[x][y]);
 }
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

Stanford CS248, Winter 2020

End-to-end rasterization pipeline
(“real-time graphics pipeline”)

Stanford CS248, Winter 2020

Command: draw these triangles!

list_of_positions = {

 v0x, v0y, v0z,
 v1x, v1y, v1x,
 v2x, v2y, v2z,
 v3x, v3y, v3x,
 v4x, v4y, v4z,
 v5x, v5y, v5x };

list_of_texcoords = {

 v0u, v0v,
 v1u, v1v,
 v2u, v2v,
 v3u, v3v,
 v4u, v4v,
 v5u, v5v }; Texture map

Size of output image (W, H)

Object-to-camera-space transform:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Perspective projection transform

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Use depth test /update depth buffer: YES!

Inputs:

Stanford CS248, Winter 2020

Step 1:
Transform triangle vertices into camera space
(apply modeling and camera transform)

z

x

y

Stanford CS248, Winter 2020

Step 2:
Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

Pinhole
Camera

(0,0)

z

x

y

znear

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Camera-space positions: 3D Normalized space positions

Note: I’m illustrating normalized 3D space after the
homogeneous divide, it is more accurate to think of
this volume in 3D-H space as defined by:
 (-w, -w, -w, w) and (w, w, w, w)

Stanford CS248, Winter 2020

Step 3: clipping
▪ Discard triangles that lie complete outside the unit cube (culling)

- They are off screen, don’t bother processing them further

▪ Clip triangles that extend beyond the unit cube to the cube
- Note: clipping may create more triangles

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Triangles before clipping Triangles after clipping

Stanford CS248, Winter 2020

Step 4: transform to screen coordinates
Transform vertex xy positions from normalized coordinates into
screen coordinates (based on screen w,h)

(0, 0)

(w, h)

Stanford CS248, Winter 2020

Step 5: setup triangle (triangle preprocessing)
Compute triangle edge equations
Compute triangle attribute equations

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Stanford CS248, Winter 2020

Step 6: sample coverage
Evaluate attributes z, u, v at all covered samples

Stanford CS248, Winter 2020

Step 6: compute triangle color at sample point
e.g., sample texture map *

u

v
u(x,y), v(x,y)

* So far, we’ve only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a
texture map. Later in the course, we’ll discuss more advanced algorithms for computing its color based on material
properties and scene lighting conditions.

Stanford CS248, Winter 2020

Step 7: perform depth test (if enabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

Also update depth value at covered samples (if necessary)

Stanford CS248, Winter 2020

Step 8: update color buffer (if depth test passed)

Stanford CS248, Winter 2020

Step 9:

▪ Repeat steps 1-8 for all triangles in the scene!

Stanford CS248, Winter 2020

Real time graphics APIs
▪ OpenGL

▪ Microsoft Direct3D

▪ Apple Metal

▪ You now know a lot about the algorithms implemented
underneath these APIs: drawing 3D triangles (key
transformations and rasterization), texture mapping, anti-
aliasing via supersampling, etc.

▪ Internet is full of useful tutorials on how to program using
these APIs

Stanford CS248, Winter 2020

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized
coordinate space

* Several stages of the modern OpenGL pipeline are omitted

Input: vertices in 3D space
1

2

3

4

Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

Stanford CS248, Winter 2020

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

* several stages of the modern OpenGL pipeline are omitted

Pipeline inputs:
- Input vertex data

- Parameters needed to compute position on vertices
in normalized coordinates (e.g., transform matrices)

- Parameters needed to compute color of fragments
(e.g., textures)

Input vertices in 3D space
1

2

3

4

transform matrices

textures

- “Shader” programs that define behavior of vertex
and fragment stages

Stanford CS248, Winter 2020

Shader programs
Define behavior of vertex processing and fragment processing stages
Describe operation on a single vertex (or single fragment)

uniform sampler2D myTexture;

uniform vec3 lightDir;

varying vec2 uv;

varying vec3 norm;

void diffuseShader()

{

 vec3 kd;

 kd = texture2d(myTexture, uv);

 kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);

 gl_FragColor = vec4(kd, 1.0);

}

Example GLSL fragment shader program

Sample surface albedo
(reflectance color) from texture

Modulate surface albedo by incident
irradiance (incoming light)

Shader outputs surface color

Per-fragment attributes
(interpolated by rasterizer)

Shader function executes once
per fragment.

Outputs color of surface at
sample point corresponding to
fragment.
(this shader performs a texture lookup to
obtain the surface’s material color at this point,
then performs a simple lighting computation)

Program parameters

Stanford CS248, Winter 2020

Texture coordinate visualization
Defines mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel = v
So uv=(0,0) is black, uv=(1,1) is yellow

Stanford CS248, Winter 2020

Rendered result

Stanford CS248, Winter 2020Unreal Engine Kite Demo (Epic Games 2015)

Goal: render very high complexity 3D scenes
- 100’s of thousands to millions of triangles in a scene
- Complex vertex and fragment shader computations
- High resolution screen outputs (2-4 Mpixel + supersampling)
- 30-60 fps

Stanford CS248, Winter 2020

Graphics pipeline implementation: GPUs
Specialized processors for executing graphics pipeline computations

Discrete GPU card
(NVIDIA GeForce Titan X)

Integrated GPU: part of modern Intel CPU chip

Stanford CS248, Winter 2020

GPU: heterogeneous, multi-core processor

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~2-4 TFLOPs of performance for
executing vertex and fragment shader programs

Take Kayvon’s Visual Computing Systems course (CS348V) for more details!

Stanford CS248, Winter 2020

Summary
▪ Occlusion resolved independently at each screen sample using the depth buffer

▪ Alpha compositing for semi-transparent surfaces

- Premultiplied alpha forms simply repeated composition

- “Over” compositing operations is not commutative: requires triangles to be
processed in back-to-front (or front-to-back) order

▪ Graphics pipeline:

- Structures rendering computation as a sequence of operations performed
on vertices, primitives (e.g., triangles), fragments, and screen samples

- Behavior of parts of the pipeline is application-defined using shader
programs.

- Pipeline operations implemented by highly, optimized parallel processors
and fixed-function hardware (GPUs)

