
Interactive Computer Graphics
Stanford CS248, Winter 2019

Modern Rendering Techniques
Using the Graphics Pipeline

Lecture 17:

Stanford CS248, Winter 2019

Left over from last time…

Stanford CS248, Winter 2019

Data-driven texture synthesis
▪ Input: low resolution texture image
▪ Want: high resolution texture that appears “like” the input

Source texture
(low resolution) High resolution texture generated by tiling

Stanford CS248, Winter 2019

Non-parametric texture synthesis

Increasing neighborhood search window

So
ur

ce
 te

xt
ur

es

Synthesized Textures

[Efros and Leung 99]

5x5 11x11 15x15 23x23

Stanford CS248, Winter 2019

Algorithm: non-parametric texture synthesis
Main idea: given NxN neighborhood w(p) around unknown pixel p, want probability
distribution function for value of p, given w(p).

For each pixel p to synthesize:

1. Find other patches in the image that are similar to the
NxN neighborhood around p

2. Center pixel of patches are candidates for p

3. Randomly sample from candidates weighted by distance d

P

[Efros and Leung 99]

Stanford CS248, Winter 2019

More texture synthesis examples
Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]

Stanford CS248, Winter 2019

Image completion example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

Stanford CS248, Winter 2019

Problem: low performance
▪ Large patch windows + full image search = slow

- Large windows: preserve structure

- Full-image search: highly relevant examples are rare

▪ Must repeat search process for all pixels

▪ Possible accelerations
- Limit search window

- Use acceleration structure for search (e.g., k-d tree)

- Dimensionality reduction of patches + approximate nearest neighbor search

- Exploit image coherence

Stanford CS248, Winter 2019

PatchMatch
▪ A randomized algorithm for rapidly finding correspondences

between image patches

▪ Problem definition:
- Given images A and B, for each overlapping patch in image A, compute the

offset to the nearest neighbor patch in image B

- Overlapping patches: each patch defined by its center pixel (ignoring boundary
conditions, each MxN image consists of MxN patches)

- PatchMatch computes “nearest neighbor field” (NNF)

- NNF is function f: A ➝ ℝ2 (maps patches in A to patches in B)

- Example: if patch b in image B is NN of patch a in image A, then f(a) = b

[Barnes et al. 2009]

Stanford CS248, Winter 2019

PatchMatch idea #1
▪ Law of large numbers: a non-trivial fraction of a large field of random offset

assignments are likely to be good guesses

▪ Initialize f with random values

Visualization of f:

Saturation = magnitude of match offset
(gray indicates matching patch in B is at
same pixel location as match patch in A)

Hue = direction of offset
offset X = red-cyan axis
offset Y = blue-yellow axis

Image credit: [Barnes et al. 2009]

Stanford CS248, Winter 2019

PatchMatch idea #2: spatial coherence
▪ High coherence of nearest neighbors in natural images

▪ Nearest neighbor of patch at (x,y) should be a strong hint for where to find nearest
neighbor of patch at (x+1,y)

0 5 10 15 20 25 30 35 40

14M

12M

10M

8M

6M

4M

2M

0

Offset Distance

Nu
m

be
r o

f n
ei

gh
bo

rin
g

pa
irs

How this graph was made:
1. Compute NNF for collection of images
2. For select pixels (x,y), compare NN offset to NN offsets

of adjacent pixels (x-1,y), (x+1,y), (x,y-1), (x,y+1)

Image credit: [Barnes et al. 2009]

Stanford CS248, Winter 2019

Propagation: improving the NNF estimate
▪ The NNF estimate provides a “best-so-far” NN for each patch in A

- NN patch: f(a)

- NN distance = d(a,b) (where b=f(a))

▪ Try to improve NNF estimate by exploiting spatial coherence with left and
top neighbor:

- Let a=(x,y), then candidate matches for a are:

- f(x-1, y) + (1,0)

- f(x, y-1) + (0,1)

- If candidate patch is better match than f(a), then replace f(a) with
candidate

- Replace f(a) with candidate patch if d(a, f(x,y-1)+(0,1)) < d(a, f(a))

▪ Next iteration, use bottom and right neighbors as candidates

Stanford CS248, Winter 2019

PatchMatch iterative improvement

Image A

Image B
(source of
patches)

Experiment:
Reconstruct A using
patches from B

Random init: 1/4 through iter 1

End of iter 1 Iter 2 Iter 5 Image credit: [Barnes et al. 2009]

Stanford CS248, Winter 2019

Random search: avoiding local minima
▪ Propagation can cause PatchMatch to get stuck in local minima

▪ Sample random sequence of candidates from exponential
distribution

- Let a=(x,y), then candidate matches for a are: (x,y) + wαiRi

- Ri is uniform random offset in [-1,1]x[-1,1]

- w is maximum search radius (e.g., width of entire image)

- α is typically 1/2

- Check all candidates where wαi ≥ 1

Stanford CS248, Winter 2019

Example applications
Photoshop’s Content Aware Fill

Image credits: [Barnes et al. 2009]

Object Manipulation

Building scaled up,
preserving texture

Building segment
marked by user

Stanford CS248, Winter 2019

Back to today’s lecture…

Stanford CS248, Winter 2019

Recall: OpenGL/Direct3D graphics pipeline

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized
coordinate space

Input: vertices in 3D space1

2

3

4

Stanford CS248, Winter 2019

Theme of this part of the lecture:

A surprising number of advanced lighting effects can be efficiently
approximated using the basic primitives of rasterization pipeline,
without the need to actually ray trace the scene geometry:

▪ Rasterization

▪ Texture mapping

▪ Depth buffer for occlusion

Stanford CS248, Winter 2019

Shadows

Stanford CS248, Winter 2019

Shadows

Image credit: Grand Theft Auto V

Stanford CS248, Winter 2019

How to compute if a surface is in shadow?

x

P

L1

L2

Stanford CS248, Winter 2019

Review: How to compute if a surface is in shadow?

▪ Based on ray tracing…

▪ Trace ray from point P to
location Li of light source

▪ If ray hits scene object
before reaching light
source… then P is in
shadow

x

P

L1

L2

Stanford CS248, Winter 2019

Shadow mapping version (recall Assignment 3)

Image credits: Segal et al. 92, NVIDIA

“Shadow map” = depth map from perspective of a point light.
(Stores closest intersection along each shadow ray in a texture)

[Williams 78]

Raytracing [Whitted 1980] and related techniques can accurately
render a variety of global illumination effects including hard shad-
ows. It is possible that real-time rendering systems will eventually
adopt raytracing techniques. However, even with recent progress in
this area [Wald et al. 2003], rendering performance remains inade-
quate for scenes containing deformable objects.
Shadow mapping [Williams 1978] and many of its variants

[Hourcade and Nicolas 1985; Fernando et al. 2001] leverage ex-
isting Z-buffer hardware to render shadows with high performance
for complex scenes. However, existing versions of the technique are
prone to sampling and self-shadowing artifacts that are sufficiently
serious to limit the technique’s use in real applications.
Figure 4 (left) illustrates the shadow map algorithm. The scene

is rendered first from the light position (yielding Znear values) and
then rendered from the eye position. Each pixel in the eye view is
treated as a 3-space point positioned according to its X / Y posi-
tion in the image plane and its Z value (from the depth buffer), and
is transformed into light space. This transformation yields a point
P in light space and a distance ZP between P and the light-view
image plane. The original eye-space pixel is considered to be in
shadow iff Znear ZP, using an estimated Znear value. The algo-
rithm estimates Znear from the Znear values of one or more light-
view sample(s) that are nearest to the projection of point P onto the
light-view image plane. This estimation step is the primary cause
of artifacts produced by the technique as the estimation error is gen-
erally unbounded.
Most recent efforts to reduce these artifacts have taken one of two

approaches. The first is to use additional information from object-
space silhouette computations to reduce or eliminate estimation er-
rors for the most common cases [Sen et al. 2003]. This approach
seems to be the most successful at reducing the incidence of esti-
mation artifacts, but sharp corners and details are often truncated or
lost due to limited precision in the contours used to represent the
silhouettes. Also, the need for object-space computation introduces
additional complexity into the rendering system. The second ap-
proach is to adapt the sampling rate in the light-view image plane to
the characteristics of the scene [Fernando et al. 2001; Stamminger
and Drettakis 2002], thereby reducing the average distance between
a projection of P and the nearest sample point. Fernando et al. [Fer-
nando et al. 2001] replace the standard light view image with an
adaptive image hierarchy. This focus on improving shadow quality
through strategic placement of shadow map sample points is simi-
lar to our own, but we take this approach to its logical extreme by
placing sample points in their ideal locations.

4 Irregular Shadow Mapping

Pseudocode for irregular shadow mapping is shown in Figure 5.
The scene is first rendered from the eye point. As in conventional
shadow mapping, pixels (at the Z values given by the Z-buffer) are
transformed into light space, yielding P and ZP. Unlike conven-
tional shadow mapping, scene geometry is then rasterized to sam-
ple positions in the light view image plane given by the projec-
tion of the transformed pixels, yielding Znear. As before, a pixel
is in shadow iff Znear ZP. Note that irregular shadow maps are
view-dependent. Samples are computed in the shadow map plane
precisely where required by pixels in the eye view. Therefore, no
mismatch exists between the sampling rates or sample positions in
eye and light space. Aliasing and self-shadowing are avoided, and
no unnecessary samples are computed. Moreover, given points P
prior to rasterization in light space, and the property that Znear is
always less than or equal to ZP, we can maximize our use of the
available Z-buffer precision.
Figure 6 plots the location of sample points within irregular

shadow maps for the Doom 3 scene from Figure 1. The density of
sample points varies significantly across the image plane, demon-

Figure 4: Conventional (left) and irregular (right) shadow map-
ping. In the case of the former, the scene is rendered to a conven-
tional Z-buffer from the light, and then from the eye. With the latter,
the scene is rendered to a conventional Z-buffer from the eye, and
to an irregular Z-buffer from the light.

strating the importance of adaptive and irregular sampling methods
in this context.
Observe that irregular shadow mapping effectively mimics

shadow generation by ray tracing. Points P match the intersection
points between eye rays and scene geometry; and steps 2, 4 and 6
imitate light ray computation. Unlike ray tracing, irregular shadow
mapping is an object-order algorithm, which means that primitives
are processed in the order submitted by the application. In this
way, our approach combines the image quality and sampling char-
acteristics of ray-traced shadows with the system organization and
performance characteristics of Z-buffer rendering.

4.1 Image Quality

We compare the quality of images produced by irregular shadow
mapping to that of several other approaches. Figure 1 shows that
images generated using irregular shadow mapping are visually in-
distinguishable from those produced by the shadow volumes tech-
nique. Figure 7 shows that irregular shadow mapping eliminates
shadow aliasing artifacts commonly associated with conventional
shadow mapping. In Figure 8 we use an L2 norm to compare
quantitatively the image quality of our approach to that of three
other approaches. Our quantitative comparison is made against
ray-traced shadows and against two other shadow mapping algo-
rithms that avoid object-space computations: conventional shadow
mapping [Williams 1978] and adaptive shadow mapping [Fernando
et al. 2001]. This figure illustrates that the number of shadow map
samples required to attain high fidelity is much less than that re-
quired by these other shadow mapping techniques.
Our conventional and adaptive implementations include stan-

dard enhancements to reduce self-shadowing and shadow alias-
ing artifacts. These enhancements include percentage closer filter-
ing (PCF) [Reeves et al. 1987], object IDs [Hourcade and Nicolas
1985] and orientation-dependent bias values like those computed by
glPolygonOffset [OpenGL Architectural Review Board 2003].

1. Place camera at position of a point light source
2. Render scene to compute depth to closest object to light along

uniformly distributed “shadow rays” (answer stored in depth
buffer)

3. Store precomputed shadow ray intersection results in a texture

Precomputed
shadow rays

Stanford CS248, Winter 2019

Result of shadow texture lookup approximates
visibility result when shading fragment at P

P

L1 Precomputed shadow rays shown in red:
Distance to closest object in scene is precomputed
and stored in texture map (“shadow map”)

Stanford CS248, Winter 2019Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map

Correct hard shadows
(result from computing v(x’,x’’) directly using ray tracing)

Shadow aliasing due to shadow map undersampling

Stanford CS248, Winter 2019

Soft shadows

Image credit: Pixar

Hard shadows
(created by point light source)

Soft shadows
(created by ???)

Stanford CS248, Winter 2019

Shadow cast by an area light

x

P1

P2

Stanford CS248, Winter 2019

Percentage closer filtering (PCF) — hack!
▪ Instead of sample shadow map once, perform

multiple lookups around desired texture
coordinate

▪ Tabulate fraction of lookups that are in shadow,
modulate light intensity accordingly

Hard Shadows
(one lookup per fragment)

PCF Shadows
(16 lookups per fragment)

Shadow Map
(consider case where distance

from light to surface is 0.5)

Stanford CS248, Winter 2019

What PCF computes 😰

x

P1

Stanford CS248, Winter 2019

Ambient occlusion

Stanford CS248, Winter 2019

Ambient occlusion

Vd(!1) = 0

Vd(!2) = 1

Vd(!1) = 0

Vd(!2) = 1

!1

!2

Idea:
Precompute “amount of hemisphere” that is occluded within distance d from a point.
When shading, attenuate environment lighting by this amount.

d

Stanford CS248, Winter 2019

“Screen-space” ambient occlusion in games

p
Depth buffer values

1. Render scene to depth buffer
2. For each pixel p (“ray trace” the depth buffer to estimate

occlusion of hemisphere - use a few samples per pixel)
3. Blur the the occlusion map to reduce noise
4. Shade pixels, darken direct environment lighting by

occlusion amount

Stanford CS248, Winter 2019

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720
in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Ambient occlusion

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720
in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Lighting modulated by occlusion

Direct Lighting (no self-shadowing computations)

Stanford CS248, Winter 2019

Reflections

Stanford CS248, Winter 2019

Reflections

Image credit: NVIDIA

Stanford CS248, Winter 2019

Recall: perfect mirror reflection

x

P1

P2

P3

Stanford CS248, Winter 2019

Rasterization: “camera” position can be reflection point

Environment mapping:
place ray origin at reflective object

Yields approximation to true
reflection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray
origin at center of reflective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered
using the cube-map)

Stanford CS248, Winter 2019

Interreflections

Stanford CS248, Winter 2019

Diffuse interreflections

Image credit: Henrik Wann Jensen

Why is this point not black?

Why is this gray wall tinted red?

Stanford CS248, Winter 2019

Precomputed lighting
▪ Precompute lighting for a scene

offline (possible for static lights)
- Offline computations can

perform advanced shadowing,
inter reflection computations

▪ “Bake” results of lighting into
texture map

Light map

Rendered result

Stanford CS248, Winter 2019

Precomputed lighting in Unity

Image credit: Unity / Alex Lovett

Visualization of light map texture coordinates

Stanford CS248, Winter 2019

Growing interest in real-time ray tracing
▪ I’ve just shown you an array of different techniques for approximating different

advanced lighting phenomenon
▪ Challenges:

- Different algorithm for each effect (code complexity)
- Algorithms may not compose
- They are approximations to the physically correct solution (“hacks!”)

▪ Traditionally, tracing rays to solve these problems was too costly for real-time use
- That may be changing soon…

This image was ray traced in real-
time on a (very high end) GPU

Learn more in
CS348B!

Stanford CS248, Winter 2019

Deferred Shading

Stanford CS248, Winter 2019

The graphics pipeline

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Frame Buffer

“Forward” rendering

Early Z

Typical use of fragment processing stage:
evaluate application-defined function from
surface inputs to surface color (reflectance)

Stanford CS248, Winter 2019

Deferred shading: two steps

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Buffer Ops

“G-buffer”

Step 1: Do not use traditional pipeline to generate RGB image

Fragment shader now outputs surface properties (future shading inputs)
(e.g., position, normal, material diffuse color, specular color)

Rendering output is a screen-size 2D buffer representing information about the surface geometry
visible at each pixel (called a “g-buffer”, for geometry buffer)

Albedo (Reflectance) Depth

SpecularNormal

Stanford CS248, Winter 2019

G-buffer = “geometry” buffer

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Reflectance) Depth

SpecularNormal

Stanford CS248, Winter 2019

Example G-buffer layout
Graphics pipeline configured to render to four RGBA output buffers + depth
(32-bits per pixel, per buffer)

Intuitive to consider G-buffer as one big render target with “fat” pixels
In the example above: 32 x 5 =160 bits = 20 bytes per pixel

96-160 bits per pixel is common in games

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks

Stanford CS248, Winter 2019

Compressed G-buffer layout

DS

RT0

RT1

G-buffer layout in Bungie’s Destiny (2014)

Source: N Tatarchuk: SIGGRAPH 2014 Courses, Matt Hoffman
Example material ID visualization

▪ Material information is compressed
using indirection

- Store material ID in G-buffer

- Material parameters other than
albedo (specular shape/roughness/
color) stored in table indexed by
material ID

Stanford CS248, Winter 2019

Two-pass deferred shading algorithm
▪ Pass 1: G-buffer generation pass

- Render complete scene geometry using
traditional pipeline

- Write visible geometry information to G-buffer

After all geometry processing is done…

▪ Pass 2: shading/lighting pass
For each G-buffer sample (x,y):
- Read G-buffer data for current sample (x,y)
- Compute shading by accumulating contribution

to reflectance of all lights
- Output final surface color for sample (x,y)

Shading/lighting computations are “deferred” until all
geometry processing is complete…

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”
Final Image

G-buffer Inputs

Stanford CS248, Winter 2019

Why is deferred shading so popular in
modern games?

Stanford CS248, Winter 2019

Motivation: why deferred shading?

▪ Shading is expensive: deferred shading shades only visible
fragments
- Exactly one shade per output screen sample, regardless of the number of

triangles in the scene (minimal amount of work + predictable shading
performance that is independent of scene size or triangle submission order)

▪ Forward rendering shades small triangles inefficiently

▪ Two performance reasons:

Stanford CS248, Winter 2019

GPUs shade at the granularity of 2x2 fragments

(“quad fragment” is the minimum granularity of rasterization output and shading)

Enables cheap computation of
texture coordinate differentials
(cheap: derivative computation
leverages shading work that must be
done by adjacent fragment anyway)

All quad fragments are shaded
independently
(communication is between fragments
in a quad fragment, no communication
required between quad fragments) (u,v) du/dx

dv/dx

du/dy
dv/dy

Stanford CS248, Winter 2019

Implication: multiple fragments get shaded for pixels
near triangle boundaries

Shading computations per pixel

8 +

7

6

5

4

3

2

1

Stanford CS248, Winter 2019

Small triangles result in extra shading

8 +
7
6
5
4
3
2
1

1 pixel-area triangles10 pixel-area triangles100 pixel-area triangles

Shaded quad fragments per pixel
(early-z is enabled + scene rendered in approximate front-to-back order to minimize extra shading due to overdraw)

Want to sample appearance approximately once per surface per pixel (assuming correct texture filtering)
But graphics pipeline generates at least one appearance sample per triangle per pixel (actually more, considering quad fragments)

Stanford CS248, Winter 2019

Motivation: why deferred shading?
▪ Shade only visible surface fragments

▪ Forward rendering shades small triangles inefficiently (quad-
fragment granularity)

▪ Scalability to increasingly complex lighting environments

Stanford CS248, Winter 2019

1000 lights

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk]

Stanford CS248, Winter 2019

Forward rendering: naive multiple-light shader
struct LightDefinition {
 int type;
 ...
}

// uniform values (read-only inputs to all fragments)
uniform sampler2D myTex;
uniform sampler2D myEnvMaps[MAX_NUM_LIGHTS];
uniform sampler2D myShadowMaps[MAX_NUM_LIGHTS];
LightDefinition lightList[MAX_NUM_LIGHTS];
int numLights;

// fragment shader receives surface normal and texture coords uv
varying vec3 norm;
varying vec3 uv;

void main() {
 vec3 kd = texture2d(myTex, uv);
 vec4 result = vec4(0, 0, 0, 0);
 for (int i=0; i<numLights; i++) {
 result += … // eval contribution of light to surface reflectance here
 }

 gl_FragColor = result; // output color of fragment shader
}

Stanford CS248, Winter 2019

Rendering as a triple “for” loop

Naive forward rasterization-based renderer:

Efficient rasterization techniques (tiled,
hierarchical, bounding boxes) serve to reduce
T x S complexity of finding covered samples.

Triangles are outermost loop:

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples

initialize color[] // store scene color for all samples

bind all relevant light data in buffers: light descriptors, shadow maps, etc.

for each triangle t in scene: // loop 1: triangles

 t_proj = project_triangle(t)

 for each sample s in frame buffer: // loop 2: visibility samples

 if (t_proj covers s)

 for each light l in scene: // loop 3: lights

 accumulate contribution of light l to surface appearance

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and color[s]

Stanford CS248, Winter 2019

Rendering as a triple “for” loop

Naive forward rasterization-based renderer:

F x L loop: # fragments x # lights

In practice: not all lights illuminate all surfaces

Would like to be more efficient in computing these interactions
(just like we were efficient computing triangle/visibility sample interactions)

initialize z_closest[] to INFINITY // store closest surface-so-far for all samples

initialize color[] // store scene color for all samples

bind all relevant shadow maps, etc.

for each triangle t in scene: // loop 1: triangles

 t_proj = project_triangle(t)

 for each sample s in frame buffer: // loop 2: visibility samples

 if (t_proj covers s)

 for each light l in scene: // loop 3: lights

 accumulate contribution of light l to surface appearance

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and color[s]

Stanford CS248, Winter 2019

Naive many-light shader with culling
struct LightDefinition {
 int type;
 ...
}

// uniform values (read-only inputs to all fragments)

uniform sampler2D myTex;

uniform sampler2D myEnvMaps[MAX_NUM_LIGHTS];

uniform sampler2D myShadowMaps[MAX_NUM_LIGHTS];

LightDefinition lightList[MAX_NUM_LIGHTS];

int numLights;

// fragment shader receives surface normal and texture coords uv

varying vec3 norm;

varying vec3 uv;

void shader() {
 vec3 kd = texture2D(myTex, uv);
 vec4 result = float4(0, 0, 0, 0);
 for (int i=0; i<numLights; i++)
 {
 if (this fragment is illuminated by current light)
 {
 if (lightList[i].type == SPOTLIGHT)
 result += // eval contribution of light here
 else if (lightList[i].type == POINTLIGHT)
 result += // eval contribution of light here
 else if ...
 }

 }
 gl_FragColor = result; // output color
}

SIMD execution divergence:
1.Different outcomes for “is illuminated” predicate

2.Different logic to perform test
(based on light type)

3.Different logic in loop body (based on light type,
shadowed/unshadowed, etc.)

Work inefficient:
Predicate evaluated for each fragment/light pair:
O(F x L) work

F = number of fragments
L = number of lights

Large footprint:
Assets for all lights (shadow maps, environment
maps, etc.) must be allocated and bound to pipeline

Stanford CS248, Winter 2019

Forward rendering: techniques for scaling to many lights

▪ Goal: avoid performing F x L “is-illuminated” checks

▪ One solution: application maintains per-object light lists
- Each scene object maintains list of lights that illuminate it
- CPU computes this list each frame by intersecting light volumes with

scene geometry
(light-geometry interactions computed per light-object pair, not light-
fragment pair)

Stanford CS248, Winter 2019

Light lists

L1

L2

L3

L4

Obj 1

Obj 2
Obj 3

Obj 4
Obj 5

Obj 1: L1

Obj 2: L2

Obj 3: L2

Obj 4: L2, L4

Example: compute lists based on conservative bounding volumes
for lights and scene objects

Resulting per-object lists:

Obj 5: L3, L4

Stanford CS248, Winter 2019

Forward rendering: techniques for scaling to many lights

▪ Application maintains light lists
- Computed conservatively per frame

▪ Option 1: draw scene in many small batches
- First generate data structures for all lights: e.g., shadow maps
- Before drawing each object, only send data for relevant lights to graphics

pipeline
- Write different variants of shader that are specialized for different numbers

of lights (4-light version, 8-light version...)
- Implications:

- Good: very efficient shaders with fewer conditionals
- Bad: many “small” draw comments to sent to GPUs

Stanford CS248, Winter 2019

Recall: rendering as a triple for-loop

Naive forward rasterization-based renderer:

initialize z_closest[] to INFINITY // store closest surface-so-far for all samples

initialize color[] // store scene color for all samples

bind all relevant shadow maps, etc.

for each triangle t in scene: // loop 1: triangles

 t_proj = project_triangle(t)

 for each sample s in frame buffer: // loop 2: visibility samples

 if (t_proj covers s)

 for each light l in scene: // loop 3: lights

 accumulate contribution of light l to surface appearance

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and color[s]

Stanford CS248, Winter 2019

Reordering triangles for light coherence
Shader code is now specialized to exactly 4 lights:

initialize z_closest[] to INFINITY // store closest surface-so-far for all samples

initialize color[] // store scene color for all samples

bind all relevant shadow maps, etc.

for each group of triangles with the same number of lights: // loop 0: groups of triangles

 bind specific shader for number of lights

 for each triangle t in group: // loop 1: triangles

 t_proj = project_triangle(t)

 for each sample s in frame buffer: // loop 2: visibility samples

 if (t_proj covers s)

 for lights 0 through 3: // loop 3: lights (specialized for 4 lights)

 accumulate contribution of light l to surface appearance

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and color[s]

Stanford CS248, Winter 2019

“Multi-pass” rendering for light coherence

Reorder loops: draw scene once per light

Each pass, only draw triangles illuminated by current light (per-light object lists)

Shader accumulates illumination of visible fragments from current light into frame buffer

initialize z_closest[] to INFINITY // store closest surface-so-far for all samples
initialize color[] // store scene color for all samples

assume z buffer is initialized using a z prepass.

for each light l in scene: // loop 1: lights

 bind single light shader specific to current light type

 bind relevant shadow map, etc.

 for each triangle t lit by light: // loop 2: triangles

 t_proj = project_triangle(t)

 for each sample s in frame buffer: // loop 3: visibility samples

 if (t_proj covers s)

 accumulate contribution of light l to surface appearance // specialized to 1 light

 if (depth of t == z_closest[s])

 update color[s]

Stanford CS248, Winter 2019

Forward rendering: techniques for scaling to many lights

▪ Application maintains light lists

▪ Option 1: draw scene in many small batches
- First generate data structures for all lights: e.g., shadow maps
- Compute per-object light lists, before drawing each object, only bind data for relevant lights
- Precompile specialized shaders for different sets of bound lights (4-light version, etc…)
- For each object:

- Render object with specialized shader for relevant lights
- Good: can use specialized fragment shader for current type/number of lights
- Bad: many draw comments to GPU (draw comment = single object, or small group of objects

with the same number of lights)

▪ Option 2: multi-pass rendering
- Compute per-light lists (for each light, compute illuminated objects)

- For each light:

- Compute necessary data structures (e.g., shadow maps)

- Render scene with additive blending (only render geometry illuminated by light)

- Good: Minimal footprint for light data

- Good: can use specialized fragment shader for current type/number of lights

- Bad: significant overheads: redundant geometry processing, many G-buffer accesses,
redundant execution of common shading sub-expressions in fragment shader

Stream
over

scene
geometry

Stream
over

lights

Stanford CS248, Winter 2019

Basic many light deferred shading algorithm
initialize z_closest[] to INFINITY // store closest-surface—so-far for all samples

initialize gbuffer[] // store surface information for all samples

for each triangle t in scene: // loop 1: triangles

 t_proj = project_triangle(t)

 for each sample s in frame buffer: // loop 2: visibility samples

 if (t_proj covers s)

 emit geometry information

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and gbuffer[s]

initialize color[] // store color for all samples

for each light in scene: // loop 1: lights

 bind single light shader specific to current light type

 bind relevant shadow map, etc.

 for each sample s in frame buffer: // loop 2: visibility samples

 load gbuffer[s]

 accumulate contribution of current light to surface appearance into color[s]

▪ Good
- Only process scene geometry once (only in phase 1)
- Outer loop of phase 2 is over lights:
- Avoids light data footprint issues (stream over lights)
- Continues to avoid divergent execution in fragment shader

- Recall other deferred benefits: only shade visibility samples (and no more)

▪ Bad?

Phase 1:
Generate
G-buffer

Phase 2:
Shade

G-buffer

Stanford CS248, Winter 2019

Basic many light deferred shading algorithm
initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples

initialize gbuffer[] // store surface information for all samples

for each triangle t in scene: // loop 1: triangles

 t_proj = project_triangle(t)

 for each sample s in frame buffer: // loop 2: visibility samples

 if (t_proj covers s)

 emit geometry information

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and gbuffer[s]

initialize color[] // store color for all samples

for each light in scene: // loop 1: lights

 bind single light shader specific to current light type

 bind relevant shadow map, etc.

 for each sample s in frame buffer: // loop 2: visibility samples

 load gbuffer[s]

 accumulate contribution of current light to surface appearance into color[s]

▪ Bad:
- High G-buffer footprint: G-buffer has large footprint (especially when G-buffer is supersampled!)
- High bandwidth costs (read G-buffer each pass, output to frame buffer)
- Exactly one shading computation per frame-buffer sample

- Does not support transparency (need multiple fragments per pixel)
- Supersampling for anti-aliasing becomes expensive

Stanford CS248, Winter 2019

Reducing deferred shading bandwidth costs
▪ Batching: process multiple lights in each phase 2 accumulation pass

- Amortizes G-buffer load and frame buffer write across lighting computations for multiple lights

▪ Only perform shading computations for G-buffer samples illuminated by light
- Technique 1: rasterize geometry of light volume (only generate fragments for covered G-buffer samples)

- Light-fragment interaction predicate is evaluated by rasterizer, not in shader

- Technique 2: CPU computes screen-aligned quad covered by light volume, renders quad

- Many other techniques for culling light/G-buffer sample interactions

Light volume geometry
If volume is convex, rendering only the front-facing
triangles of the light volume will generate fragments in
the yellow shaded region
(these are the only g-buffer samples that can be effected
by the light)

Stanford CS248, Winter 2019

Scene with 256 lightsLit Scene (256 Point Lights)

Beyond Programmable Shading, SIGGRAPH 2010 78/2/2010

Stanford CS248, Winter 2019

Visualization of light-sample interaction count

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen

Per-light culling is performed using a screen-aligned quad per light
(depth of quad is nearest point in light volume: early Z will cull fragments behind scene geometry)

Stanford CS248, Winter 2019

Screen tiled-based light culling

Yellow boxes: screen-aligned light volume bounding boxes
Blue boxes: screen tile boundaries

Image credit: HMREngine: http://www.hmrengine.com/blog/?p=399

Main idea: build list of lights that effect each screen tile (not each object)
Project light volume, then intersect in 2D with tiles

http://www.hmrengine.com/blog/?p=399

Stanford CS248, Winter 2019

Tile-based deferred shading: better light culling efficiency
(16x16 granularity of light culling is apparent in figure)

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen

Stanford CS248, Winter 2019

Challenge: anti-aliasing geometry
in a deferred renderer

Stanford CS248, Winter 2019

Supersampling in a deferred shading system
▪ In assignment 1, you anti-aliased rendering via supersampling

- Stored N color samples and N depth samples per pixel

▪ Deferred shading makes supersampling challenging due to large
amount of information that must be stored per pixel
- 2800 x 1800 (my Mac laptop I’m presenting on today)
- 4 samples per pixel
- 20 bytes per G-buffer sample

= 403 MB G-buffer
(24 GB/sec of memory bandwidth just to read and write the G-buffer at 30 fps)

Stanford CS248, Winter 2019

Morphological anti-aliasing (MLAA)
Detect careful designed patterns in rendered image
For detected patterns, blend neighboring pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

[Reshetov 09]

Note: modern interest in replacing MLAA patterns with DNN-based anti-aliasing.

Stanford CS248, Winter 2019

Morphological anti-aliasing (MLAA)

Aliased image
(one shading sample per pixel)

After filtering using MLAAZoomed views
(top: aliased, bottom: after MLAA)

[Reshetov 09]

Stanford CS248, Winter 2019

Summary: deferred shading
▪ Very popular technique in modern games

▪ Creative use of graphics pipeline

- Create a G-buffer, not a final image

▪ Two major motivations

- Convenience and simplicity of separating geometry processing logic/
costs from shading costs

- Potential for high performance under complex lighting and shading
conditions

- Shade only once per sample despite triangle overlap

- Often more amenable to “screen-space shading techniques”

- e.g., screen space ambient occlusion

