Lecture 14:
 Dynamics and Time Integration

Interactive Computer Graphics
Stanford CS248, Winter 2019

Challenge: hand animate this clothing!

Dynamical description of motion

"A change in motion is proportional to the motive force impressed and takes place along the straight line in which that force is impressed."
—Sir Isaac Newton, 1687
"Dynamics is concerned with the study of forces and their effect on motion, as opposed to kinematics, which studies the motion of objects without reference to its causes."
-Sir Wiki Pedia, present
(Q: Is keyframe interpolation dynamic, or kinematic?)

Newton's 2nd law

Physically based animation

- Generate motion of objects using numerical simulation

Generalized coordinates

- Often describing systems with many, many moving pieces
- E.g., a collection of billiard balls, each with position x_{i}
- Collect them all into a single vector of generalized coordinates:

$$
\underset{\sim}{q=\left(x_{0}, x_{1}, \ldots, x_{n}\right)} \underset{\mathbb{R}^{n}}{\substack{\left.x_{0} \\ x_{1} \\ x_{5}(t) \\ x_{1} x_{4}\right) \\ x_{2} \\ \hline}}
$$

- Can think of q as a single point moving along a trajectory in R^{n}
- This way of thinking naturally maps to the way we actually solve equations on a computer: all variables are often "stacked" into a big long vector and handed to a solver

Generalized velocity

■ Generalized velocity: it's the time derivative of the generalized coordinates!

$$
\dot{q}=\left(\dot{x}_{0}, \dot{x}_{1}, \ldots, \dot{x}_{n}\right)
$$

$$
q(t)
$$

All of life (and physics) is just traveling along a curve...

Ordinary differential equations

- Many dynamical systems can be described via an ordinary differential equation (ODE) in generalized coordinates:

- ODE doesn't have to describe mechanical phenomenon, e.g.,

$$
\frac{d}{d t} u(t)=a u \quad \text { "rate of growth is proportional to value" }
$$

- Solution: $u(t)=b e^{a t}$
- Describes exponential decay ($a<1$), or really great stock ($a>1$)

■ "Ordinary" means"involves derivatives in time but not space"

- We'll leave talking about spatial derivatives (PDEs) to CS348C

Dynamics via ODEs

■ Another key example: Newton's 2nd law!

$$
\ddot{q}=F / m
$$

- "Second order" ODE since we take two time derivatives
- Can also write as a system of two first order ODEs, by introducing new "dummy" variable for velocity:

$$
\begin{aligned}
& \dot{q}=v \\
& \dot{v}=F / m
\end{aligned}
$$

- Splitting things up this way will make it easier to talk about solving these equations numerically

Simple example: throwing a rock

- Consider a rock* of mass m tossed under force of gravity g
- Easy to write dynamical equations, since only force is gravity:

(What do we need a computer for?!)
*Yes, this rock is spherical and has uniform density.

Force due to gravity

- Gravity at earth's surface due to earth
- g is gravitational acceleration, $g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
g=(0,0,-9.8) \mathrm{m} / \mathrm{s}^{2}
$$

Slightly harder example: pendulum

- Mass on end of a bar, swinging under gravity
- What are the equations of motion?
- Same as "rock" problem, but constrained
- Could use a "force diagram"
- You probably did this for many hours in high school/college
- Let's do something different. ..

$m g \sin \theta$

Lagrangian mechanics

- Beautifully simple recipe:

1. Write down kinetic energy K
2. Write down potential energy U
3. Write down Lagrangian $\mathcal{L}:=K-U$
4. Dynamics then given by Euler-Lagrange equation

- Why is this useful?
- often easier to come up with (scalar) energies than forces
- very general, works in any kind of generalized coordinates
- helps develop nice class of numerical integrators (symplectic)

Lagrangian mechanics - example

- Generalized coordinates for pendulum?

$$
q=\theta \longleftarrow \text { just one coordinate } \text { angle with the vertical direction }
$$

■ Kinetic energy (mass m)?

$$
K=\frac{1}{2} I \omega^{2}=\frac{1}{2} m L^{2} \dot{\theta}^{2}
$$

■ Potential energy?

$$
U=m g h=-m g L \cos \theta
$$

■ Euler-Lagrange equations: (from here, just"plug and chug"-even a computer could do it!)

$$
\begin{aligned}
& \mathcal{L}=K-U=m\left(\frac{1}{2} L^{2} \dot{\theta}^{2}+g L \cos \theta\right) \\
& \frac{\partial \mathcal{L}}{\partial \dot{q}}=\frac{\partial \mathcal{L}}{\partial \dot{\theta}}=m L^{2} \dot{\theta} \quad \frac{\partial \mathcal{L}}{\partial q}=\frac{\partial \mathcal{L}}{\partial \theta}=-m g L \sin \theta \\
& \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}}=\frac{\partial \mathcal{L}}{\partial q} \Rightarrow \ddot{\theta}=-\frac{g}{L} \sin \theta
\end{aligned}
$$

Solving the pendulum

- Great, now we have a nice simple equation for the pendulum:

$$
\ddot{\theta}=-\frac{g}{L} \sin \theta
$$

- For small angles (e.g., clock pendulum) can approximate as

$$
\ddot{\theta}=-\frac{g}{L} \theta \quad \Rightarrow \theta(t)=a \underset{\text { "harmonic oscillator" }}{\cos (t \sqrt{g / L}+b)}
$$

- In general, there is no closed form solution!
- Hence, we must use a numerical approximation
- ...And this was (almost) the simplest system we can think of!
- (What if we want to animate something more interesting?)

Not-so-simple example: double pendulum

- Blue ball swings from fixed point; green ball swings from blue one
- Simple system... not-so-simple motion!
- Chaotic: perturb input, wild changes to output
- Must again use numerical approximation

Not-so-simple example: n-body problem

■ Consider the Earth, moon, and sun-where do they go?

- Solution is trivial for two bodies (e.g., assume one is fixed)
- As soon as $\mathrm{n} \geq 3$, again get chaotic solutions (no closed form)

■ What if we want to simulate entire galaxies?

[^0]
For animation, we want to simulate these kinds of phenomena!

Example: flocking

Vildaboutimages

Simulated flocking as an ODE

- Each bird is a particle
- Subject to very simple forces:
- attraction to center of neighbors
- repulsion from individual neighbors
- alignment toward average trajectory of neighbors
- Solve large system of ODEs (numerically!)
- Emergent complex behavior (also seen in fish, bees, ...)

attraction

repulsion

alignment

Particle systems

- Model phenomena as large collection of particles
- Each particle has a behavior described by (physical or non-physical) forces
- Extremely common in graphics/games
- easy to understand
- simple equation for each particle
- easy to scale up/down

Example: crowds

Where are the bottlenecks in a building plan?

Example: crowds + "rock" dynamics

Example: particle-based fluids

Macklin and Müller, Position Based Fluids
(Fluid: particles or continuum?)

Example: granular materials

Bell et al, "Particle-Based Simulation of Granular Materials"

Example: molecular dynamics

Jindfich Soukup, William Pläzzgräff
Schola ludus 2010, Nove Hrady
(model of melting ice crystal)

Gravitational attraction

- Newton's universal law of gravitation
- Gravitational pull between particles

Example: cosmological simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)

Example: mass-spring system

- Connect particles $\mathrm{x}_{1}, \mathrm{x}_{2}$ by a spring of length L_{0}
- Potential energy is given by

$$
\begin{aligned}
& =\frac{1}{2} k\left(\left|x_{1}-x_{2}\right|^{2}-L_{0}\right)^{2}
\end{aligned}
$$

- Connect up many springs to describe interesting phenomena
- Extremely common in graphics/games
- easy to understand
- simple equation for each particle

Non-zero length spring

■ Spring with non-zero rest length

- Below: direct specification of force on x1 due to spring)

$$
f_{\mathbf{x}_{1}}=k\left(\left|\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{\mathbf{1}}\right|-L_{0}\right)
$$

Problem: oscillates forever...
How might we add internal dampening?

Example: mass-spring rope

Example: hair

Example: mass-spring system

Example structures from springs

■ Sheets

■ Blocks

Structures from springs

- Behavior is determined by structure linkages

This structure will not resist shearing

It will also not resist out-of-plane bending.

Structures from springs

- Behavior is determined by structure linkages

This structure will resist shearing but has anisotropic bias

It will not resist out-of-plane bending.

Structures from springs

- Behavior is determined by structure linkages

This structure will resist shearing. Less directional bias.

But will not resist out-of-plane bending...

Structures from springs

- Behavior is determined by structure linkages

This structure not resist shearing. Less directional bias.

This structure will resist out-of-plane bending.

In general, red springs should be weaker

Example: mass spring + character anim

How do we solve these systems numerically?

Numerical integration

- Key idea: replace derivatives with differences
- In ODE, only need to worry about derivative in time
- Replace time-continuous function $q(t)$ with samples q_{k} in time

$$
\frac{d}{d t} q(t)=f(q(t))
$$

Forward Euler

■ Simplest scheme: evaluate velocity at current configuration

- New configuration can then be written explicitly in terms of known data:

■ Very intuitive: walk a tiny bit in the direction of the velocity

- Problems: poor accuracy and not very stable

Euler's method - error

- With numerical integration, errors accumulate

Problem: instability

$$
q_{k+1}=q_{k}+\tau \dot{q_{k}}
$$

- Very intuitive: walk a tiny bit in the direction of the velocity
- Unfortunately, not very stable, consider a spring...

When mass is moving inward:

- Force is decreasing
- Each time-step overestimates the velocity change (increases energy)
When mass gets to origin
- Has velocity that is too high, now traveling outward When mass is moving outward
- Force is increasing

- Each time-step underestimates the velocity change (increases energy)
With each motion cycle, mass gains energy exponentially

Another example

■ Consider a pendulum...

starts out slow...

Where did all this extra energy come from?

...gradually moves faster \& faster!

Forward Euler - stability analysis

- Let's consider behavior of forward Euler for simple linear ODE:

$$
\dot{u}=-a u, \quad a>0
$$

- Importantly: u should decay (exact solution is $u(t)=e^{-a t}$)
- Forward Euler approximation is

$$
\begin{aligned}
u_{k+1} & =u_{k}-\tau a u_{k} \\
& =(1-\tau a) u_{k}
\end{aligned}
$$

- Which means after n steps, we have

$$
u_{n}=(1-\tau a)^{n} u_{0}
$$

- Decays only if $|1-\mathrm{ta}|<1$, or equivalently, if $\mathrm{t}<2 / \mathrm{a}$

■ In practice: need very small time steps if a is large ("stiff system")

Backward Euler

- Let's try something else: evaluate velocity at next configuration - New configuration is then implicit, and we must solve for it:

■ Harder to solve, since in general f can be very nonlinear!
■ Pendulum is now stable... perhaps too stable?
starts out slow...

Where did all the energy go?

Backward Euler - stability analysis

- Again consider a simple linear ODE:

$$
\dot{u}=-a u, \quad a>0
$$

- Remember: u should decay (exact solution is $u(t)=e^{-a t}$)
- Backward Euler approximation is

$$
\begin{aligned}
\left(u_{k+1}-u_{k}\right) / \tau & =-a u_{k+1} \\
\Longleftrightarrow u_{k+1} & =\frac{1}{1+\tau a} u_{k}
\end{aligned}
$$

- Which means after n steps, we have

$$
u_{n}=\left(\frac{1}{1+\tau a}\right)^{n} u_{0}
$$

- Decays if $\mid 1+$ ta| >1, which is always true!

■ \Rightarrow Backward Euler is unconditionally stable for linear ODEs

Symplectic Euler

- Backward Euler was stable, but we also saw (empirically) that it exibits numerical damping (damping not found in original eqn.)
- Nice alternative is symplectic Euler
- update velocity using current configuration
- update configuration using new velocity
- Easy to implement; used often in practice (or leapfrog, Verlet, ...)
- Pendulum now conserves energy almost exactly, forever:
starts out slow...

(Proof? The analysis is not quite as easy...)

Numerical integrators

- Barely scratched the surface
- Many different integrators

■ Why? Because many notions of "good":

- stability
- accuracy
- consistency/convergence
- conservation, symmetry, ...
- computational efficiency (!)

■ No one "best" integrator—pick the right tool for the job!

- Could do (at least) an entire course on time integration...

■ Great book: Hairer, Lubich, Wanner

Not covered today: contact mechanics

Smith et al, "Reflections on Simultaneous Impact"

Not covered today: contact mechanics

Bridson et al. 2002

Yarn-level cloth simulation

Material fracture

Summary

- Mathematical modeling of dynamical systems and (usually) solution by numerical integration
- Particle systems
- Flexible force modeling, e.g. spring-mass sytems, gravitational attraction, fluids, flocking behavior
- Newtonian equations of motion = ODEs
- Solution by numerical integration of ODEs: Explicit Euler, Implicit Euler, Symplectic Euler, etc..
- Error and instability, methods to combat instability
- Acknowledgements: thanks to Keenan Crane, Ren Ng, Tom Funkhouser, James O'Brien for presentation resources

[^0]: Credit: Governato et al / NASA

