
Interactive Computer Graphics
Stanford CS248, Winter 2019

Kinematics and Motion
Capture

Lecture 13

Stanford CS248, Winter 2019

Today

KINEMATICS: we are going to
describe how objects move, without
considering the underlying forces
that generate that motion

Stanford CS248, Winter 2019

Forward kinematics
Articulated skeleton

- Topology (what’s connected to what)

- Geometric relations from joints

- Tree structure (in absence of loops)

Joint types

- Pin (1D rotation)

- Ball (2D rotation)

- Prismatic joint (translation)

Stanford CS248, Winter 2019

Forward kinematics

Simple System: A Two Segment Arm

Warning: Z−up Coordinate System

x

z

Example: simple two segment arm in 2D

x

z

Object space position of part

Stanford CS248, Winter 2019

Forward kinematics
Animator provides angles, and computer determines position p of end-effector

Simple System: A Two Segment Arm

Warning: Z−up Coordinate System

x

z End effector

To transform point p with object
space representation (0, l2) into
world space:

Rotate by
Translate by (0, l1)
Rotate by ✓1

✓2

Stanford CS248, Winter 2019

Forward kinematics
Animation is described as angle parameter values as a function of time:

Simple System: A Two Segment Arm

Warning: Z−up Coordinate System

x

z
✓1

t

t

✓2

✓1(t), ✓2(t)

Stanford CS248, Winter 2019

Example: walk cycle
Articulated leg:

Watt & Watt
Slide credit: Tom Funkhouser, Ren Ng

Stanford CS248, Winter 2019

Example: walk cycle
Hip joint angle

Watt & Watt

Slide credit: Tom Funkhouser, Ren Ng

Stanford CS248, Winter 2019

Example: walk cycle
Knee joint angle

Watt & Watt

Slide credit: Tom Funkhouser, Ren Ng

Stanford CS248, Winter 2019

Example: walk cycle
Ankle joint angle

Watt & Watt

Slide credit: Tom Funkhouser, Ren Ng

Stanford CS248, Winter 2019

Example: walk cycle

Stanford CS248, Winter 2019

Skeleton joint transforms: T1, T2

Skinning: how to transform mesh vertices
according to skeleton transforms

Image credit: Ladislav Kavan

Stanford CS248, Winter 2019

Vertex i on mesh

Image credit: Ladislav Kavan

Stanford CS248, Winter 2019

Rigid body skinning

One idea: transform mesh vertices according to transform for
nearby skeleton joint

Original pose Vertices transforms according to
corresponding joint transform

(notice surface interpenetration)

Interpenetration of
mesh triangles

Red verts = associated with second joint
Blue verts = associated with first joint

Stanford CS248, Winter 2019

Linear blend skinning *
Mesh vertices transformed by linear combination of nearby joint transforms
Very common technique for character animation in games

v0i =
NX

j

wijTjvi

=

0

@
NX

j

wijTj

1

A vi

vi = rest object space vertex position
Tj = transform for bone j
wij = weight of bone j on vertex i
N = number of bones

* Also called “matrix palette skinning” or “skeletal subspace deformation” (SSD)
Image credit: Ladislav Kavan

Stanford CS248, Winter 2019

Linear blend skinning

Transform mesh vertices according to linear combination of
transforms for nearby skeleton joint

Original pose After transform

Stanford CS248, Winter 2019

Shortcomings of linear blend skinning
Loss of volume under large transformations

by these frameworks are visual comparisons performed by
the authors themselves. In this paper, we provide an objec-
tive comparison of the animations generated by SSD, Ani-
mation Space and Multi-Weight Enveloping based on how
similar the recreated animations are to the original anima-
tion used to create the model.

The error metrics we use to compare the quality of the ap-
proximations are geometric deviation and normal deviation.
Since these metrics do not account for temporal artefacts
that could be disturbing to a viewer, we conduct human
studies to evaluate the animation quality. Furthermore, we
study the parameters used in each of the frameworks in or-
der to determine suitable values. The analysis of the change
in error as the values change also gives an indication of the
sensitivity of each framework to these parameters and the
resulting ease of use.

In the following sections there is a review of skinning tech-
niques, including a description of the three frameworks we
compare. We then discuss the manner in which the com-
parison is undertaken. Lastly, we present our findings and
conclude.

2. FORMALISM

In general, skinning frameworks define the skin’s movement
as a function of the underlying skeleton. In addition, some
frameworks use the geometric information of a single pose,
called the rest pose. In this paper, we use a triangle mesh to
represent the skin of a character and so animation involves
the movement of the vertices of this mesh. The skinning
frameworks could, however, be applied to the control points
of another representation such as a Bezier surface.

For the purpose of animating the character’s skin, we repre-
sent each bone by the transformation that takes a point from
bone-space to model-space. A bone may be thought of as
defining its own coordinate frame with one end at the origin
and the length of the bone lying along an axis. Through the
use of homogeneous coordinates, a bone’s transformation is
described by a 4 ⇥ 4 matrix that changes a point’s coor-
dinates from being relative to the bone’s local coordinate
frame, to being relative to the model’s coordinate frame.

We make use of the following notation: the position of a
particular vertex, v, in the rest pose is written as v̂. Bones
are indexed from 1 to b. The transformation matrix asso-
ciated with bone i in its current pose is called Ti and the
transformation of the same bone in the rest pose is written
as T̂i.

The position of the vertex v when moving rigidly with a
particular bone may be found as follows: for each bone, i,
the position of the vertex in the rest pose is first transformed
from model coordinates (v̂) to bone coordinates (v̂i) by ap-
plying the inverse of the rest pose bone transformation:

v̂i = T̂�1
i v̂.

The vertex in bone coordinates, v̂i, is then transformed back
into model coordinates by applying the transformation of the
bone in its new skeletal configuration:

vi = Tiv̂i = TiT̂
�1
i v̂.

Figure 1: Meshes generated using SSD show loss
of volume when joints are rotated to extreme an-
gles. Examples include the elbow joint collapsing
(left) and the “candy-wrapper” e↵ect as the wrist is
rotated (right).

This gives the vertex’s position when moved rigidly with
bone i, remaining stationary relative to it. The three skin-
ning frameworks are based on the idea of combining these
vi in order to find the position of v in a particular pose.

2.1 Skeletal Subspace Deformation

Skeletal Subspace Deformation (SSD) is the simplest and
most widely used method for calculating skin deformations
in real time. It is known under various names in the liter-
ature, for instance Linear Blend Skinning, Enveloping and
Vertex Blending. It was not originally published but is de-
scribed in papers that look to extend and improve it [11, 9,
16, 17, 8, 14, 13].

SSD determines the new position of a vertex by linearly
combining the results of the vertex transformed rigidly with
each bone. A scalar weight, wi, is given to each influencing
bone and the weighted sum gives the vertex’s position, v, in
the new pose, as follows:

v =
bX

i=1

wiTiT̂
�1
i v̂. (1)

For bones which have no influence on the movement of a
vertex, the associated weight would be 0. The weights are
set such that

Pb
i=1 wi = 1.

SSD has a number of well-documented shortcomings [11,
9, 16, 17, 8, 12]. The most significant is that SSD-generated
meshes exhibit volume loss as joints are rotated to extreme
angles. This is seen in joint collapses and the“candy-wrapper”
e↵ect (Figure 1). These undesirable results occur because of
a lack of flexibility in the framework. In finding the position
of a vertex in a new pose, the transformation matrices of the
influencing bones are interpolated in a linear manner. The
linear interpolation of these matrices is not equivalent to the
linear interpolation of their rotations.

Despite these shortcomings, SSD remains popular because
of its simplicity and computational e�ciency. There has
been significant research into improving the SSD algorithm.
One approach is to combine data interpolation techniques
widely used in facial animation to correct the error in the
vertex positions generated by SSD [9, 16, 8]. The error for
each vertex is calculated for a number of example meshes
and then interpolated to give the error correction for a par-

“candy wrapper effect”
Bone rotated 180
degrees radially

Many more advanced solutions in literature:
dual-quaternion skinning, joint-based
deformers, etc.

Image credit: Jacka et al.

Stanford CS248, Winter 2019

Skinning example

Courtesy Matthew Lailler via Keenan Crane via Ren Ng

Stanford CS248, Winter 2019

Rigging
“Rigging” is the process of attaching a set of animation controls to a mesh
- In the case of linear blend skinning: it is attaching a skeleton to the

mesh (e.g., setting per vertex blend weights)

Example: artist painting vertex blend weights directly on mesh in Maya

Stanford CS248, Winter 2019

Different ways to obtain joint angles

Hand animate values (as discussed above)

Measure angles from a performance via motion capture

Solve for angles based on higher-level goal (optimization)

Stanford CS248, Winter 2019

Motion Capture

Stanford CS248, Winter 2019

Motion capture
Data-driven approach to creating
animation sequences
- Record real-world

performances (e.g. person
executing an activity)

- Extract pose as a function of
time from the data collected

Motion capture room for ShaqFu

Stanford CS248, Winter 2019

Optical motion capture

Ronda Rousey in Electronic Arts’ motion capture studio

Source: http://fightland.vice.com/blog/ronda-rousey-20-the-queen-of-all-media

http://fightland.vice.com/blog/ronda-rousey-20-the-queen-of-all-media

Stanford CS248, Winter 2019

Optical motion capture

- Affix markers to joints of subject
- Compute 3D positions by triangulation from multiple cameras
- 8+ cameras, 240 Hz, occlusions are difficult

Retroreflective markers attached to subject IR illumination and cameras

Slide credit: Steve Marschner

Stanford CS248, Winter 2019

Motion capture pros and cons
Strengths
- Can capture large amounts of real data quickly
- Realism can be high

Weaknesses
- Complex and costly set-ups (but progress in computer

vision is changing this)
- Captured animation may not meet artistic needs,

requiring alterations

Stanford CS248, Winter 2019

Challenges of facial animation
“Uncanny valley”

- In robotics and graphics

- As artificial character appearance
approaches human realism, our
emotional response goes negative,
until it achieves a sufficiently
convincing level of realism in
expression

Cartoon. 
Brave, Pixar

Semi-realistic. Polar Express, Warner Bros

Stanford CS248, Winter 2019

Challenges of facial motion capture

Final Fantasy Spirits Within

Stanford CS248, Winter 2019

Facial motion capture

Discovery, “Avatar: Motion Capture Mirrors Emotions”, https://youtu.be/1wK1Ixr-UmM

https://youtu.be/1wK1Ixr-UmM

Stanford CS248, Winter 2019

Aside: lower-cost forms of capture

Stanford CS248, Winter 2019

Microsoft XBox 360 Kinect

Illuminant
(Infrared Laser + diffuser)

RGB CMOS Sensor
640x480 (w/ Bayer mosaic)

Monochrome Infrared
CMOS Sensor

(Aptina MT9M001)
1280x1024 **

** Kinect returns 640x480 disparity image, suspect sensor is configured for 2x2 pixel binning down to 640x512, then crop

Image credit: iFixIt

Stanford CS248, Winter 2019
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Stanford CS248, Winter 2019
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Stanford CS248, Winter 2019

Depth from “disparity” using structured light

z

zref

d

f

Reference plane

Known light
source

b

System: one light source emitting known beam + one camera measuring scene appearance
If the scene is at reference plane, image that will be recorded by camera is known
Movement of observed dot from from reference gives depth.

Single spot illuminant is inefficient!
(Must “scan” scene to get depth, so high latency to retrieve a single depth image. Hence the dot pattern on the Kinect)

x

Stanford CS248, Winter 2019

Extracting the player’s 2D skeleton
(enabling full-body game input)

Depth Image Character Joint AnglesChallenge: how to determine player’s position and
motion from (noisy) depth images... without consuming
a large fraction of the XBox 360’s compute capability?

[Shotton et al. 2011]

Stanford CS248, Winter 2019

Key idea: classify pixels into body regions

Shotton et al. represents body with 31 regions

[Shotton et al. 2011]

Stanford CS248, Winter 2019

Pixel classification
For each pixel: compute features from depth image

Classify pixels into body parts using randomized decision forest classifier
- Trained on 100K motion capture poses + database of rendered images as ground truth

Two example depth features

Per-pixel probabilities pooled to compute 3D spatial density function for each body part c
(joint angles inferred from this density)

Result of classification: (probability pixel x in depth image I is body part c)

[Shotton et al. 2011]

Where and is the

depth image value at pixel X.

Features are cheap to compute + can be computed for all pixels in parallel
- Features do not depend on velocities: only information from current frame

Stanford CS248, Winter 2019

Modern computer vision approaches
“OpenPose”: 2D (but not 3D) skeleton from single RGB image

Image credits: Cao et al 2017, Simon et al 2017

Hands/Fingers
Ongoing research to obtain high-quality 3D poses

Stanford CS248, Winter 2019

Single camera facial performance capture

Input video frame Output 3D mesh

[Image credit: “Production-Level Facial Performance Capture Using Deep Convolutional Neural Networks”,
Lehtinen et al 2017]

DNN
(trained on “ground truth” mesh

data output by an expensive
video processing pipeline that

used 9 video cameras)

Stanford CS248, Winter 2019

Single smartphone camera facial
performance capture (Apple Animoji)

Stanford CS248, Winter 2019

So far… we’ve discussed hand animating or
directly measuring joint positions

Inverse Kinematics

(computer solves for joint angles based on high-level goal)

Stanford CS248, Winter 2019

Example: inverse kinematics
Egon Pasztor

Stanford CS248, Winter 2019

Example: inverse kinematics

Stanford CS248, Winter 2019

Inverse kinematics
Input: animator provides position of end-effector
Output: computer must determine joint angles that satisfy constraints

Direct IK: Solve for and

x

z t

t

px

pz

Stanford CS248, Winter 2019

Inverse kinematics
Direct inverse kinematics: for two-segment arm, can solve for
parameters analytically (not true for general N-link problem)

Direct IK: Solve for and

x

z t

t

px

pz

Stanford CS248, Winter 2019

Inverse kinematics
Why is the problem hard?

- Multiple solutions in configuration space (and these may not
be nearby, causing jumps from frame-to-frame)

- Solution may not be possibleWhy is this a hard problem?

Multiple solutions separated in
configuration space

Why is this a hard problem?

Multiple solutions connected in
configuration space

Stanford CS248, Winter 2019

Inverse kinematics
Numerical solution to general N-link IK problem
- Choose an initial configuration
- Define an error metric (e.g. square of distance between

goal and end effector’s current position)
- Apply optimization method to solve for joint angles given

the desired (goal) end effector position

Stanford CS248, Winter 2019

A few bits on optimization
(a commonly used tool in graphics)

Stanford CS248, Winter 2019

Optimization problem in standard form
Can formulate most continuous optimization problems this way:
“objective”: how much does solution x cost?

“constraints”: what must be true about x? (“x is feasible”)

Optimal solution x* has smallest value of f0 among all feasible x
Q: What if we want to maximize something instead?
A: Just flip the sign of the objective!
Q: What if we want equality constraints, rather than inequalities?
A: Include two constraints: g(x) ≤ c and g(x) ≤ -c

often (but not always) continuous, differentiable, ...

Stanford CS248, Winter 2019

Local vs. global minima
Global minimum is absolute best among all possibilities
Local minimum is best “among immediate neighbors”

Philosophical question: does a local minimum “solve” the problem?

global minimum

local minima

Stanford CS248, Winter 2019

Optimization problem, visualized

Q: Is this an optimization problem in standard form?
Q: Where is the optimal solution?

A: Yes
A: There are two, (0,1), (0,-1)

(0,1)

(0,-1)

Stanford CS248, Winter 2019

Existence and uniqueness of minimizers
Already saw that (global) minimizer is not unique
Does it always exist? Why?
Just consider all possibilities and take the smallest one, right?

perfectly reasonable
optimization problem

clearly has no solution
(can always pick smaller x)

WRONG! Not all objectives are bounded from below.
It’s like that old adage: “no matter how good you are,
there will always be someone better than you.”

Stanford CS248, Winter 2019

Feasibility
Ok, but suppose the objective is bounded from below
Then we can just take the best feasible solution, right?

Not if there aren’t any!
Not all problems have solutions!

value of objective doesn’t depend on x;
all feasible solutions are equally good

problem now is just finding a feasible solution—
which can be really hard (or impossible!)

Stanford CS248, Winter 2019

Feasibility - example
Q: Is this problem feasible?

A: No—the two sublevel sets (points where f_i(x) ≤ 0)
have no common points, i.e., they do not overlap.

Stanford CS248, Winter 2019

Existence and uniqueness of minimizers, cont.
Even being bounded from below is not enough:

� �

� (�)

No matter how big x is, we never achieve the lower bound (0)

Stanford CS248, Winter 2019

Characterization of minimizers
Ok, so we have some sense of when a minimizer might exist
But how do we know a given point x is a minimizer?

global minimum

local minima

Checking if a point is a global minimizer is (generally) hard
But we can certainly test if a point is a local minimum (ideas?)
(Note: a global minimum is also a local minimum!)

...but what about this point?
find points where

Stanford CS248, Winter 2019

Characterization of local minima
Consider an objective f0: R → R. How do you find a minimum?
(Hint: you may have memorized this formula in high school!)

Also need to check second derivative (how?)
Make sure it’s positive
Ok, but what does this all mean for more general functions f0?

must also satisfy

Stanford CS248, Winter 2019

Optimality conditions (unconstrained)
In general, our objective is f0: Rn → R
How do we test for a local minimum?
1st derivative becomes gradient; 2nd derivative becomes Hessian

GRADIENT
(measures “slope”) HESSIAN

(measures “curvature”)

Optimality conditions? positive semidefinite (PSD)
(uTAu ≥ 0 for all u)

1st order 2nd order

Stanford CS248, Winter 2019

Convex optimization
Special class of problems that are almost always “easy” to solve
(polynomial-time!)
Problem is convex if it has a convex domain and convex objective

Why care about convex problems in graphics?
- can make guarantees about solution (always the best)
- doesn’t depend on initialization (strong convexity)
- often efficient to solve, but not always

convex objective

nonconvex objective
noconvex domain

convex domain

Stanford CS248, Winter 2019

Sadly, life is not usually that easy.
How do we solve optimization

problems in general?

Stanford CS248, Winter 2019

Descent methods
An idea as old as the hills:

Stanford CS248, Winter 2019

Gradient descent (1D)
Basic idea: follow the gradient “downhill” until it’s zero
(Zero gradient was our 1st-order optimality condition)

Do we always end up at a (global) minimum?
How do we compute gradient descent in practice?

Stanford CS248, Winter 2019

Gradient descent algorithm (1D)

Q: How do we pick the step size?
If we’re not careful, we’ll go
zipping all over the place; won’t
make any progress.

Basic idea: use “step control” to determine step size based on
value of objective and derivatives
For now we will do something simple: make τ small!

“Walk downhill”

step sizenew estimate

xk+1 = xk � ⌧f 0
0(xk)

Stanford CS248, Winter 2019

Gradient descent algorithm (n-D)
Q: How do we write gradient descent equation in general?

Q: What’s the corresponding discrete update?

Basic challenge in nD:
- solution can “oscillate”
- takes many, many small steps
- very slow to converge

Stanford CS248, Winter 2019

Simple inverse kinematics algorithm
What is the objective?
- Distance from end effector position (given current joint

parameters) to target position.

How to optimize for joint angles:
- Compute gradient of objective with respect to joint angles
- Apply gradient descent

Constraints?
- Could limit range of motion of a joint

f0(✓) = kpcurrent � ptargetk2

vector of joint
angles for all joint
(to optimize)

desired position

position of end effector (given)✓

Stanford CS248, Winter 2019

Many uses of optimization in animation
(and graphics in general)

Sumit Jain, Yuting Ye, and C. Karen Liu, “Optimization-based Interactive Motion Synthesis”

http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html

Stanford CS248, Winter 2019

Summary
Kinematics: how objects move, without regard to forces that
create this movement

Today: multiple ways of obtaining joint motion
- Direct hand authoring of joint angles
- Via measurement (motion capture)
- As a result of solving for angles that yield a particular

higher level result (inverse kinematics)

Acknowledgements: thanks to Keenan Crane, Ren Ng, Mark Pauly, Steve Marschner,
Tom Funkhouser, James O’Brien for presentation resources

