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Increasing the complexity of our world model
Materials, lighting, ...GeometryTransformations
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Increasing the complexity of our models
...but what about motion?
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First animation

(Shahr-e Sukhteh, Iran 3200 BCE)
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History of animation

(tomb of Khnumhotep, Egypt 2400 BCE)
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History of animation

(Phenakistoscope, 1831)
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First film
Originally used as scientific tool rather than for entertainment 
Critical technology that accelerated development of animation

Eadweard Muybridge, “Sallie Gardner” (1878)
Interesting note: study commissioned by Leland Stanford 

(to determine if horse’s feet ever off the ground)
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First hand-drawn feature-length animation

Disney, “Snow White and the Seven Dwarfs” (1937)
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First digital-computer-generated animation

Ivan Sutherland, “Sketchpad” (1963)
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First 3D computer animation

William Fetter, “Boeing Man” (1964)
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Early computer animation

Nikolay Konstantinov, “Kitty” (1968)
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Early computer animation

Ed Catmull & Fred Park, “Computer Animated Faces” (1972)
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First attempted CG feature film

NYIT [Williams, Heckbert, Catmull, ...], “The Works” (1984)
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First CG feature film

Pixar, “Toy Story” (1995)
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Computer animation - present day

Pixar’s Coco (2017) 
https://www.youtube.com/watch?v=GvicFasn_yM&t=4m5s

Notice combination of character animation, camera animation, and physical simulation in this clip.
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Generating motion (hand-drawn)

Assistant draws inbetweens 
Tedious / labor intensive (opportunity for technology!)

keyframe
keyframe keyframe

inbetweens (“tweening”)

Senior artist draws keyframes
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Keyframing
Basic idea: 
- Animator specifies important events only 
- Computer fills in the rest via interpolation/approximation 
“Events” don’t have to be position 
Could be color, light intensity, camera zoom, ...

Keyframe 2

Keyframe 1 Keyframe 3
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Keyframing example

Keyframe 1 Keyframe 2
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Keyframing example

Keyframe 1 Keyframe 2
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Keyframing example

Keyframe 1 Keyframe 3

Keyframe 2
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Principles of animation
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Animation principles
From 
- “Principles of Traditional Animation Applied to 3D 

Computer Animation” - John Lasseter, ACM Computer 
Graphics, 21(4), 1987 

In turn from 
- “The Illusion of Life”  

Frank Thomas and Ollie Johnson

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/prin_trad_anim.htm

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/prin_trad_anim.htm
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12 animation principles
1. Squash and stretch 
2. Anticipation 
3. Staging 
4. Straight ahead and pose-to-pose 
5. Follow through 
6. Ease-in and ease-out 
7. Arcs 
8. Secondary action 
9. Timing 
10. Exaggeration  
11. Solid drawings 
12. Appeal
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12 animation principles

Cento Lodgiani, https://vimeo.com/93206523

https://vimeo.com/93206523
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Squash and stretch
Refers to defining the rigidity and mass of an object by 
distorting its shape during an action 
Shape of object changes during movement, but not its volume



Stanford CS248, Winter 2019

Anticipation
Prepare for each movement 
For physical realism 
To direct audience’s attention

Timing for Animation, Whitaker & Halas
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Staging
Picture is 2D 
Make situation clear 
Audience looking in right place 
Action clear in silhouette

Disney Animation: The Illusion of Life
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Follow through
Overlapping motion 
Motion doesn’t stop suddenly 
Pieces continue at different rates 
One motion starts while previous is 
finishing, keeps animation smooth

Timing for Animation, Whitaker & Halas
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Ease-in and ease-out
Movement doesn’t start and stop abruptly 
Also contributes to weight and emotion
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Arcs
Move in curves, not in straight lines 
This is how living creatures move

Disney Animation: The Illusion of Life
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Secondary action
Motion that results from some other action 
Needed for interest and realism 
Shouldn’t distract from primary motion

Cartoon Animation, Preston Blair
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Timing
Rate of acceleration conveys weight 
Speed and acceleration of character’s movements convey 
emotion

Timing for Animation, Whitaker & Halas
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Exaggeration
Helps make actions clear 
Helps emphasize story points and emotion 
Must balance with non-exaggerated parts

Timing for Animation, Whitaker & Halas
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Appeal
Attractive to the eye, strong design  
Avoid symmetries

Disney Animation: The Illusion of Life
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Personality
Action of character is result of its thoughts 
Know purpose and mood before animating each action 
No two characters move the same way
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Further reading
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How do we describe motion 
on a computer?
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Basic techniques in computer animation
Artist-directed (e.g., keyframing) 
Data-driven (e.g., motion capture) 
Procedural (e.g., simulation)
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How do we interpolate data?
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Spline interpolation
Mathematical theory of interpolation arose from study of thin 
strips of wood or metal (“splines”) under various forces
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Interpolation
Basic idea: “connect the dots” 
E.g., piecewise linear interpolation 
Simple, but yields “rough” motion (infinite acceleration)

attribute

time
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Piecewise polynomial interpolation
Common interpolant: piecewise polynomial “spline”

Basic motivation: get better continuity than piecewise linear!
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Splines
In general, a spline is any piecewise polynomial function 
In 1D, spline interpolates data over the real line:

“knots” values

“Interpolates” means that the function exactly passes through 
those values:

The only other condition is that the function is a polynomial 
when restricted to any interval between knots:

degree

coefficients

polynomial

for ti  t  ti+1, f(t) =
dX

j=1

cjt
j =: pi(t)
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What’s so special about cubic polynomials?
Splines most commonly used for interpolation are cubic (d=3) 
Can provide “reasonable” continuity 
Tempting to use higher-degree polynomials to get higher-order continuity 
Can lead to oscillation, ultimately worse approximation:
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Fitting a cubic polynomial to endpoints
Consider a single cubic polynomial 

Suppose we want it to match two given endpoints:

Many solutions!
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Cubic polynomial - degrees of freedom
Why are there so many different solutions? 
Cubic polynomial has four degrees of freedom (DOFs), namely 
four coefficients (a,b,c,d) that we can manipulate/control 
Only need two degrees of freedom to specify endpoints:

Overall, four unknowns but only two equations 
Not enough to uniquely determine the curve!
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Fitting cubic to endpoints and derivatives
What if we also match specified derivatives at endpoints?
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Splines as linear systems
Now we have four equations and four unknowns 
Could also express as a matrix equation:

This is a common way to define a spline 
- Each condition on spline leads to a linear equality 
- Hence, if we have m degrees of freedom, we need m 

(linearly independent!) conditions to determine spline
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Solve for polynomial coefficients
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Matrix form
Interpolates endpoints, matches derivatives
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⇥
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Interpretation 1: matrix rows = coefficient formulas
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Interpretation 2: matrix cols = ???
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Hermite basis functions
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Hermite Basis for cubic polynomials
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cubic polynomials

f0(t) = t3
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Either basis can represent a cubic polynomial through linear combination!
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Natural splines
Now consider piecewise spline made of n cubic polynomials pi 
For each interval, want polynomial “piece” pi to interpolate 
data (e.g., keyframes) at both endpoints: 

Want tangents to agree at endpoints (“C1 continuity”): 

Also want curvature to agree at endpoints (“C2 continuity”): 

How many equations do we have at this point? 

- 2n+(n-1)+(n-1) = 4n-2 
Pin down remaining DOFs by setting 2nd derivative 
(curvature) to zero at endpoints

i

i
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Spline desiderata
In general, what are some properties of a “good” spline? 
- INTERPOLATION: spline passes exactly through data points 
- CONTINUITY: at least twice differentiable everywhere (for 

animation = constant “acceleration”) 
- LOCALITY: moving one control point doesn’t affect whole curve 

How does our natural spline do? 
- INTERPOLATION: yes, by construction 
- CONTINUITY: C2 everywhere, by construction 
- LOCALITY: no, coefficients depend on global linear system 

Many other types of splines we can consider 

Spoiler: there is “no free lunch” with cubic splines (can’t 
simultaneously get all three properties)
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Back to Hermite splines from earlier in lecture
Hermite: each cubic “piece” specified by endpoints and tangents:

Commonly used for 2D vector art (Illustrator, Inkscape, SVG, ...) 
Can we get tangent (C1) continuity?
Sure: set both tangents to same value on both sides of knot! 

E.g., f1 above, but not f2



A Bézier curve is a curve expressed in the Bernstein basis:
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Recall from geometry lecture: Bézier curves

control points

For n=3, get “cubic Bézier”: 
Properties: 
1. interpolates endpoints (like Hermite) 
2. tangent to end segments (like Hermite) 
3. contained in convex hull of control points

“n choose k”

k=0,…,n

degree
0≤x≤1
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Properties of Hermite/Bézier spline
More precisely, want endpoints to interpolate data: 

Also want tangents to interpolate some given data:

How is this different from our natural spline’s tangent condition? 
There, tangents didn’t have to match any prescribed value—
they merely had to be the same.  Here, they are given. 
How many conditions overall? 

2n + 2n = 4n 
What properties does this curve have? 

INTERPOLATION and LOCALITY, but not C2 CONTINUITY

p0i(ti) = ui, p0i(ti+1) = ui+1, i = 0, i, ..., n� 1
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Catmull-Rom splines
Sometimes makes sense to specify tangents (e.g., illustration) 
Often more convenient to just specify values 
Catmull-Rom: specialization of Hermite spline, determined 
by values alone 
Basic idea: use difference of neighbors to define tangent

All the same properties as any other 
Hermite spline (locality, etc.) 
Commonly used to interpolate 
motion in computer animation. 
Many, many variants, but Catmull-
Rom is usually good starting point
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Spline desiderata, revisited

INTERPOLATION CONTINUITY LOCALITY

natural YES YES NO

Hermite YES NO YES

??? NO YES YES

See B-Splines
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But what quantities do we 
seek to interpolate?



Stanford CS248, Winter 2019

Simple example: camera path
Animate position, direction, “up” direction of camera 
- each path is a function f(t) = ( x(t), y(t), z(t) ) 
- each component (x,y,z) is a spline

Zaha Hadid Architects—
City of Dream

s Hotel Tower
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Character animation
Scene graph/kinematic chain: scene as tree of transformations 
E.g. in our “cube person,” configuration of a leg might be 
expressed as rotation relative to body 
Animate by interpolating transformations 
Often have sophisticated “rig”: rotate

Even w/ computer “tweening,” its a lot of work to animate!

courtesy M
atthew

 Lailler
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Inverse kinematics
Important technique in animation and robotics 
Rather than adjust individual transformations, set “goal” and use 
algorithm to come up with plausible motion:

Many algorithms—to be discussed in a future lecture

Goal position 
(for end of arm)

System solves for 
joint angles
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Skeletal animation
Previous characters looked a lot different from “cube man”! 
Often use “skeleton” to drive deformation of continuous surface 
Influence of each bone determined by, e.g., weighting function:

(Many, many other possibilities—still active area of R&D)
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Blend shapes
Instead of skeleton, interpolate directly between surfaces 
E.g., model a collection of facial expressions: 

Simplest scheme: take linear combination of vertex positions 
Spline used to control choice of weights over time

courtesy Félix Ferrand
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Coming up next...
Even with “computer-aided tweening,” animating a scene by hand 
takes a lot of work! 
Will see how data capture and physical simulation can help
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