
Interactive Computer Graphics
Stanford CS248, Winter 2019

Introduction to
Animation

Lecture 12

Stanford CS248, Winter 2019

Increasing the complexity of our world model
Materials, lighting, ...GeometryTransformations

Stanford CS248, Winter 2019

Increasing the complexity of our models
...but what about motion?

Stanford CS248, Winter 2019

First animation

(Shahr-e Sukhteh, Iran 3200 BCE)

Stanford CS248, Winter 2019

History of animation

(tomb of Khnumhotep, Egypt 2400 BCE)

Stanford CS248, Winter 2019

History of animation

(Phenakistoscope, 1831)

Stanford CS248, Winter 2019

First film
Originally used as scientific tool rather than for entertainment
Critical technology that accelerated development of animation

Eadweard Muybridge, “Sallie Gardner” (1878)
Interesting note: study commissioned by Leland Stanford

(to determine if horse’s feet ever off the ground)

Stanford CS248, Winter 2019

First hand-drawn feature-length animation

Disney, “Snow White and the Seven Dwarfs” (1937)

Stanford CS248, Winter 2019

First digital-computer-generated animation

Ivan Sutherland, “Sketchpad” (1963)

Stanford CS248, Winter 2019

First 3D computer animation

William Fetter, “Boeing Man” (1964)

Stanford CS248, Winter 2019

Early computer animation

Nikolay Konstantinov, “Kitty” (1968)

Stanford CS248, Winter 2019

Early computer animation

Ed Catmull & Fred Park, “Computer Animated Faces” (1972)

Stanford CS248, Winter 2019

First attempted CG feature film

NYIT [Williams, Heckbert, Catmull, ...], “The Works” (1984)

Stanford CS248, Winter 2019

First CG feature film

Pixar, “Toy Story” (1995)

Stanford CS248, Winter 2019

Computer animation - present day

Pixar’s Coco (2017)
https://www.youtube.com/watch?v=GvicFasn_yM&t=4m5s

Notice combination of character animation, camera animation, and physical simulation in this clip.

Stanford CS248, Winter 2019

Generating motion (hand-drawn)

Assistant draws inbetweens
Tedious / labor intensive (opportunity for technology!)

keyframe
keyframe keyframe

inbetweens (“tweening”)

Senior artist draws keyframes

Stanford CS248, Winter 2019

Keyframing
Basic idea:
- Animator specifies important events only
- Computer fills in the rest via interpolation/approximation
“Events” don’t have to be position
Could be color, light intensity, camera zoom, ...

Keyframe 2

Keyframe 1 Keyframe 3

Stanford CS248, Winter 2019

Keyframing example

Keyframe 1 Keyframe 2

Stanford CS248, Winter 2019

Keyframing example

Keyframe 1 Keyframe 2

Stanford CS248, Winter 2019

Keyframing example

Keyframe 1 Keyframe 3

Keyframe 2

Stanford CS248, Winter 2019

Principles of animation

Stanford CS248, Winter 2019

Animation principles
From
- “Principles of Traditional Animation Applied to 3D

Computer Animation” - John Lasseter, ACM Computer
Graphics, 21(4), 1987

In turn from
- “The Illusion of Life”  

Frank Thomas and Ollie Johnson

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/prin_trad_anim.htm

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/prin_trad_anim.htm

Stanford CS248, Winter 2019

12 animation principles
1. Squash and stretch
2. Anticipation
3. Staging
4. Straight ahead and pose-to-pose
5. Follow through
6. Ease-in and ease-out
7. Arcs
8. Secondary action
9. Timing
10. Exaggeration
11. Solid drawings
12. Appeal

Stanford CS248, Winter 2019

12 animation principles

Cento Lodgiani, https://vimeo.com/93206523

https://vimeo.com/93206523

Stanford CS248, Winter 2019

Squash and stretch
Refers to defining the rigidity and mass of an object by
distorting its shape during an action
Shape of object changes during movement, but not its volume

Stanford CS248, Winter 2019

Anticipation
Prepare for each movement
For physical realism
To direct audience’s attention

Timing for Animation, Whitaker & Halas

Stanford CS248, Winter 2019

Staging
Picture is 2D
Make situation clear
Audience looking in right place
Action clear in silhouette

Disney Animation: The Illusion of Life

Stanford CS248, Winter 2019

Follow through
Overlapping motion
Motion doesn’t stop suddenly
Pieces continue at different rates
One motion starts while previous is
finishing, keeps animation smooth

Timing for Animation, Whitaker & Halas

Stanford CS248, Winter 2019

Ease-in and ease-out
Movement doesn’t start and stop abruptly
Also contributes to weight and emotion

Stanford CS248, Winter 2019

Arcs
Move in curves, not in straight lines
This is how living creatures move

Disney Animation: The Illusion of Life

Stanford CS248, Winter 2019

Secondary action
Motion that results from some other action
Needed for interest and realism
Shouldn’t distract from primary motion

Cartoon Animation, Preston Blair

Stanford CS248, Winter 2019

Timing
Rate of acceleration conveys weight
Speed and acceleration of character’s movements convey
emotion

Timing for Animation, Whitaker & Halas

Stanford CS248, Winter 2019

Exaggeration
Helps make actions clear
Helps emphasize story points and emotion
Must balance with non-exaggerated parts

Timing for Animation, Whitaker & Halas

Stanford CS248, Winter 2019

Appeal
Attractive to the eye, strong design
Avoid symmetries

Disney Animation: The Illusion of Life

Stanford CS248, Winter 2019

Personality
Action of character is result of its thoughts
Know purpose and mood before animating each action
No two characters move the same way

Stanford CS248, Winter 2019

Further reading

Stanford CS248, Winter 2019

How do we describe motion
on a computer?

Stanford CS248, Winter 2019

Basic techniques in computer animation
Artist-directed (e.g., keyframing)
Data-driven (e.g., motion capture)
Procedural (e.g., simulation)

Stanford CS248, Winter 2019

How do we interpolate data?

Stanford CS248, Winter 2019

Spline interpolation
Mathematical theory of interpolation arose from study of thin
strips of wood or metal (“splines”) under various forces

Stanford CS248, Winter 2019

Interpolation
Basic idea: “connect the dots”
E.g., piecewise linear interpolation
Simple, but yields “rough” motion (infinite acceleration)

attribute

time

Stanford CS248, Winter 2019

Piecewise polynomial interpolation
Common interpolant: piecewise polynomial “spline”

Basic motivation: get better continuity than piecewise linear!

Stanford CS248, Winter 2019

Splines
In general, a spline is any piecewise polynomial function
In 1D, spline interpolates data over the real line:

“knots” values

“Interpolates” means that the function exactly passes through
those values:

The only other condition is that the function is a polynomial
when restricted to any interval between knots:

degree

coefficients

polynomial

for ti  t  ti+1, f(t) =
dX

j=1

cjt
j =: pi(t)

Stanford CS248, Winter 2019

What’s so special about cubic polynomials?
Splines most commonly used for interpolation are cubic (d=3)
Can provide “reasonable” continuity
Tempting to use higher-degree polynomials to get higher-order continuity
Can lead to oscillation, ultimately worse approximation:

Stanford CS248, Winter 2019

Fitting a cubic polynomial to endpoints
Consider a single cubic polynomial

Suppose we want it to match two given endpoints:

Many solutions!

Stanford CS248, Winter 2019

Cubic polynomial - degrees of freedom
Why are there so many different solutions?
Cubic polynomial has four degrees of freedom (DOFs), namely
four coefficients (a,b,c,d) that we can manipulate/control
Only need two degrees of freedom to specify endpoints:

Overall, four unknowns but only two equations
Not enough to uniquely determine the curve!

Stanford CS248, Winter 2019

Fitting cubic to endpoints and derivatives
What if we also match specified derivatives at endpoints?

Stanford CS248, Winter 2019

Splines as linear systems
Now we have four equations and four unknowns
Could also express as a matrix equation:

This is a common way to define a spline
- Each condition on spline leads to a linear equality
- Hence, if we have m degrees of freedom, we need m

(linearly independent!) conditions to determine spline

Stanford CS248, Winter 2019

Solve for polynomial coefficients
2

664

a
b
c
d

3

775 =

2

664

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

3

775

�1 2

664

p0
p1
u0

u1

3

775

2

664

a
b
c
d

3

775 =

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0
p1
u0

u1

3

775

Stanford CS248, Winter 2019

Matrix form
Interpolates endpoints, matches derivatives

p(t) =
⇥
t3 t2 t 1

⇤

2

664

a
b
c
d

3

775 =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0
p1
u0

u1

3

775

p(t) =
⇥
t3 t2 t 1

⇤

2

664

a
b
c
d

3

775 =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0
p1
u0

u1

3

775

p(t) = at3 + bt2 + ct+ d

Stanford CS248, Winter 2019

Interpretation 1: matrix rows = coefficient formulas

p(t) =
⇥
t3 t2 t 1

⇤

2

664

a
b
c
d

3

775 =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0
p1
u0

u1

3

775

p(t) = at3 + bt2 + ct+ d

Stanford CS248, Winter 2019

Interpretation 2: matrix cols = ???

p(t) =
⇥
t3 t2 t 1

⇤

2

664

a
b
c
d

3

775 =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0
p1
u0

u1

3

775

p(t) = at3 + bt2 + ct+ d

=

2

664

2t2 � 3t2 + 1
�2t3 + 3t2

t3 � 2t2 + t
t3 � t2

3

775

T 2

664

p0
p1
u0

u1

3

775

Stanford CS248, Winter 2019

Hermite basis functions

p(t) =
⇥
t
3

t
2

t 1
⇤

2

664

a

b

c

d

3

775 =
⇥
H0(t) H1(t) H2(t) H3(t)

⇤

2

664

p0

p1

u0

u1

3

775

Hermite Basis for cubic polynomials

H0(t) = 2t2 � 3t2 + 1

H1(t) = �2t3 + 3t2

H2(t) = t
3 � 2t2 + t

H3(t) = t
3 � t

2

One common basis for
cubic polynomials

f0(t) = t3

f1(t) = t2

f2(t) = t

f3(t) = 1

Either basis can represent a cubic polynomial through linear combination!

Stanford CS248, Winter 2019

Natural splines
Now consider piecewise spline made of n cubic polynomials pi
For each interval, want polynomial “piece” pi to interpolate
data (e.g., keyframes) at both endpoints:

Want tangents to agree at endpoints (“C1 continuity”):

Also want curvature to agree at endpoints (“C2 continuity”):

How many equations do we have at this point?

- 2n+(n-1)+(n-1) = 4n-2
Pin down remaining DOFs by setting 2nd derivative
(curvature) to zero at endpoints

i

i

Stanford CS248, Winter 2019

Spline desiderata
In general, what are some properties of a “good” spline?
- INTERPOLATION: spline passes exactly through data points
- CONTINUITY: at least twice differentiable everywhere (for

animation = constant “acceleration”)
- LOCALITY: moving one control point doesn’t affect whole curve

How does our natural spline do?
- INTERPOLATION: yes, by construction
- CONTINUITY: C2 everywhere, by construction
- LOCALITY: no, coefficients depend on global linear system

Many other types of splines we can consider

Spoiler: there is “no free lunch” with cubic splines (can’t
simultaneously get all three properties)

Stanford CS248, Winter 2019

Back to Hermite splines from earlier in lecture
Hermite: each cubic “piece” specified by endpoints and tangents:

Commonly used for 2D vector art (Illustrator, Inkscape, SVG, ...)
Can we get tangent (C1) continuity?
Sure: set both tangents to same value on both sides of knot!

E.g., f1 above, but not f2

A Bézier curve is a curve expressed in the Bernstein basis:

Stanford CS248, Winter 2019

Recall from geometry lecture: Bézier curves

control points

For n=3, get “cubic Bézier”:
Properties:
1. interpolates endpoints (like Hermite)
2. tangent to end segments (like Hermite)
3. contained in convex hull of control points

“n choose k”

k=0,…,n

degree
0≤x≤1

Stanford CS248, Winter 2019

Properties of Hermite/Bézier spline
More precisely, want endpoints to interpolate data:

Also want tangents to interpolate some given data:

How is this different from our natural spline’s tangent condition?
There, tangents didn’t have to match any prescribed value—
they merely had to be the same. Here, they are given.
How many conditions overall?

2n + 2n = 4n
What properties does this curve have?

INTERPOLATION and LOCALITY, but not C2 CONTINUITY

p0i(ti) = ui, p0i(ti+1) = ui+1, i = 0, i, ..., n� 1

Stanford CS248, Winter 2019

Catmull-Rom splines
Sometimes makes sense to specify tangents (e.g., illustration)
Often more convenient to just specify values
Catmull-Rom: specialization of Hermite spline, determined
by values alone
Basic idea: use difference of neighbors to define tangent

All the same properties as any other
Hermite spline (locality, etc.)
Commonly used to interpolate
motion in computer animation.
Many, many variants, but Catmull-
Rom is usually good starting point

Stanford CS248, Winter 2019

Spline desiderata, revisited

INTERPOLATION CONTINUITY LOCALITY

natural YES YES NO

Hermite YES NO YES

??? NO YES YES

See B-Splines

Stanford CS248, Winter 2019

But what quantities do we
seek to interpolate?

Stanford CS248, Winter 2019

Simple example: camera path
Animate position, direction, “up” direction of camera
- each path is a function f(t) = (x(t), y(t), z(t))
- each component (x,y,z) is a spline

Zaha Hadid Architects—
City of Dream

s Hotel Tower

Stanford CS248, Winter 2019

Character animation
Scene graph/kinematic chain: scene as tree of transformations
E.g. in our “cube person,” configuration of a leg might be
expressed as rotation relative to body
Animate by interpolating transformations
Often have sophisticated “rig”: rotate

Even w/ computer “tweening,” its a lot of work to animate!

courtesy M
atthew

 Lailler

Stanford CS248, Winter 2019

Inverse kinematics
Important technique in animation and robotics
Rather than adjust individual transformations, set “goal” and use
algorithm to come up with plausible motion:

Many algorithms—to be discussed in a future lecture

Goal position
(for end of arm)

System solves for
joint angles

Stanford CS248, Winter 2019

Skeletal animation
Previous characters looked a lot different from “cube man”!
Often use “skeleton” to drive deformation of continuous surface
Influence of each bone determined by, e.g., weighting function:

(Many, many other possibilities—still active area of R&D)

Stanford CS248, Winter 2019

Blend shapes
Instead of skeleton, interpolate directly between surfaces
E.g., model a collection of facial expressions:

Simplest scheme: take linear combination of vertex positions
Spline used to control choice of weights over time

courtesy Félix Ferrand

Stanford CS248, Winter 2019

Coming up next...
Even with “computer-aided tweening,” animating a scene by hand
takes a lot of work!
Will see how data capture and physical simulation can help

Stanford CS248, Winter 2019

Acknowledgements
Thanks to Keenan Crane, Ren Ng, and Mark Pauly for
presentation resources

