
Interactive Computer Graphics
Stanford CS248, Winter 2019

Digital Geometry
Processing

Lecture 7:

Stanford CS248, Winter 2019

A small triangle mesh

8 vertices, 12 triangles

Stanford CS248, Winter 2019

A large triangle mesh

David 
Digital Michelangelo Project  
28,184,526 vertices 
56,230,343 triangles

Stanford CS248, Winter 2019

Even larger meshes

Google Earth  
Meshes reconstructed from satellite and aerial photography  
Trillions of triangles

Stanford CS248, Winter 2019

Digital geometry processing: motivations
3D

 Sc
an

ni
ng

3D
 P

rin
tin

g

Stanford CS248, Winter 2019

Geometry processing pipeline

print

process
scan

Stanford CS248, Winter 2019

Recall: image upsampling

Stanford CS248, Winter 2019

Recall: image upsampling

Upsampling via
bilinear interpolation

Stanford CS248, Winter 2019

Recall: image downsampling

Stanford CS248, Winter 2019

Recall: image resampling

Stanford CS248, Winter 2019

Examples of geometry processing

Stanford CS248, Winter 2019

Mesh upsampling — subdivision

Increase resolution via interpolation

Stanford CS248, Winter 2019

Mesh downsampling — simplification

Decrease resolution; try to preserve shape/appearance

Stanford CS248, Winter 2019

Mesh resampling — regularization

Modify sample distribution to improve quality

Stanford CS248, Winter 2019

More geometry processing tasks

reconstruction
filtering

remeshing
compressionparameterizationshape analysis

Stanford CS248, Winter 2019

Today
Study how to represent meshes (data structures)
Study how to process meshes (basic geometry processing)

- Subdivision

- Mesh simplification

- Mesh resampling

Stanford CS248, Winter 2019

Mesh representations

Stanford CS248, Winter 2019

List of triangles

Stanford CS248, Winter 2019

Lists of vertexes / indexed triangle

Stanford CS248, Winter 2019

Comparison
List of triangles

 + Simple
 – Contains redundant vertex information

Vertexes + indexed triangles
 + Sharing vertices reduces memory usage
 + Ensure integrity of the mesh (moving a vertex  
 causes that vertex in all the polygons to move)

Stanford CS248, Winter 2019

Mesh topology vs surface geometry
Same vertex positions, different mesh topology

Same topology, different vertex positions

Stanford CS248, Winter 2019

Topological mesh information
Applications:

- Constant time access to neighbors  
e.g. surface normal calculation, subdivision

- Editing the geometry 
e.g. adding/removing vertices, faces, edges, etc.

Solution: topological data structures

Stanford CS248, Winter 2019

Topological validity: manifold
Recall, a 2D manifold is a surface that when cut with a small
sphere always yields a disk

Manifold Not manifold

With border With border

Stanford CS248, Winter 2019

Manifolds have useful properties
A 2D manifold is a surface that when cut with a small sphere
always yields a disk

If a mesh is manifold, we can rely on these useful properties: *
- An edge connects exactly two faces
- An edge connects exactly two vertices
- A face consists of a ring of edges and vertices
- A vertex consists of a ring of edges and faces
- Euler’s polyhedron formula holds: #f – #e + #v = 2  

(for a surface topologically equivalent to a sphere)  
(Check for a cube: 6 – 12 + 8 = 2)

* Some of these properties only apply to non-border mesh regions

Stanford CS248, Winter 2019

Topological validity: orientation consistency

AB

C

D

AB

C

D

OK bad

Non-orientable
(e.g., Moebius strip)

Both facing front

AB

C

D

AB

C

D

OK bad

Inconsistent orientations

Image credit: Wikipedia

Stanford CS248, Winter 2019

Simple example: triangle-neighbor data structure

struct Tri {
Vert * v[3];
Tri * t[3];

}

struct Vert {
Point pt;
Tri *t;

}

t[0]

t[1]t[2]

v[0]

v[1]

v[2]

Stanford CS248, Winter 2019

Triangle-neighbor – mesh traversal

Tri* tccwvt(Vert *v, Tri *t)
{

if (v == t->v[0])
return t[0];

if (v == t->v[1])
return t[1];

if (v == t->v[2])
return t[2];

}

t[0]

t[1]t[2]

v[0]

v[1]

v[2]

Find next triangle counter-clockwise around vertex v from triangle t

t

Stanford CS248, Winter 2019

Half-edge data structure

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge {

 Halfedge *twin,

 Halfedge *next;

 Vertex *vertex;

 Edge *edge;

 Face *face;

}

Key idea: two half-edges act as “glue”
between mesh elements

Each vertex, edge and face points
to one of its half edges

struct Vertex {

 Point pt;

 Halfedge *halfedge;

}

struct Edge {

 Halfedge *halfedge;

}

struct Face {

 Halfedge *halfedge;

}

Stanford CS248, Winter 2019

Half-edge structure facilitates mesh traversal
Use twin and next pointers to move around mesh
Process vertex, edge and/or face pointers

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
 process(h->vertex);
 h = h->next;
}
while(h != f->halfedge);

Example 1: process all vertices of a face

Stanford CS248, Winter 2019

Half-edge structure facilitates mesh traversal

Halfedge* h = v->halfedge;
do {
 process(h->edge);
 h = h->twin->next;
}
while(h != v->halfedge);

ha
lf
ed
ge

twin

twin

next

next
Vertex

Example 2: process all edges around a vertex

Stanford CS248, Winter 2019

Local mesh operations

Stanford CS248, Winter 2019

Half-Edge – local mesh editing
Consider basic operations for linked list: insert, delete
Basic ops for half-edge mesh: flip, split, collapse edges

b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

Allocate / delete elements; reassign pointers
(Care is needed to preserve mesh manifold property)

Stanford CS248, Winter 2019

Half-edge – edge flip
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

b

c

a d

b

c

a d

flip

Long list of half-edge pointer reassignments

However, no mesh elements created/destroyed

Stanford CS248, Winter 2019

Half-edge – edge split
Insert midpoint m of edge (c,b), connect to get four triangles:

Must add elements to mesh (new vertex, faces, edges)

Again, many half-edge pointer reassignments

b

m

c

a d

b

c

a d

split

Stanford CS248, Winter 2019

Half-edge – edge collapse
Replace edge (c,d) with a single vertex m:

Must delete elements from the mesh

Again, many half-edge pointer reassignments

a

b

c d

a

b

m

collapse

Stanford CS248, Winter 2019

Global mesh operations: geometry processing
Mesh subdivision (form of subsampling)
Mesh simplification (form of downsampling)
Mesh regularization (form of resampling)

Stanford CS248, Winter 2019

Upsampling a mesh — subdivision

Stanford CS248, Winter 2019

Upsampling via subdivision

Repeatedly split each element into smaller pieces

Replace vertex positions with weighted average of
neighbors

Main considerations:

- interpolating vs. approximating

- limit surface continuity (C1, C2, ...)

- behavior at irregular vertices

Many options:

- Quad: Catmull-Clark

- Triangle: Loop, butterfly, sqrt(3)

Stanford CS248, Winter 2019

Loop subdivision
Common subdivision rule for triangle meshes
“C2” smoothness away from irregular vertices
Approximating, not interpolating

Sim
on Fuhrm

an

Stanford CS248, Winter 2019

Loop subdivision algorithm
Split each triangle into four

1/8

1/8

3/83/8

New vertices
(weighted sum of vertices on

split edge, and vertices
“across from” edge)

u u

u u

u u1 – n*u

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

Old vertices
(weighted sum of

edge adjacent vertices)

Compute new vertex positions using weighted sum of prior vertex positions:

Stanford CS248, Winter 2019

Loop subdivision algorithm
Example, for degree 6 vertices (“regular” vertices)

10/16

1/16

1/16 1/16

1/16

1/16 1/16

Stanford CS248, Winter 2019

Loop subdivision results

Simon Fuhrman

Stanford CS248, Winter 2019

Semi-regular meshes
Most of the mesh has vertices
with degree 6

But if the mesh is topologically
equivalent to a sphere, then not
all the vertices can have degree 6

Must have a few extraordinary
points (degree not equal to 6)

Extraordinary vertex

Stanford CS248, Winter 2019

Proof: always an extraordinary vertex
Our triangle mesh (topologically equivalent to sphere) has V vertices, E edges, and T triangles

E = 3/2 T
- There are 3 edges per triangle, and each edge is part of 2 triangles
- Therefore E = 3/2T

T = 2V – 4
- Euler Convex Polyhedron Formula: T – E + V = 2
- => V = 3/2 T – T + 2 => T = 2V – 4

If all vertices had 6 triangles, T = 2V
- There are 6 edges per vertex, and every edge connects 2 vertices
- Therefore, E = 6/2V => 3/2T = 6/2V => T = 2V

T cannot equal both 2V – 4 and 2V, a contradiction
- Therefore, the mesh cannot have 6 triangles for every vertex

Stanford CS248, Winter 2019

Loop subdivision via edge operations

Images cribbed from Keenan Crane, cribbed from Denis Zorin

(Don’t forget to update vertex positions!)

split

First, split edges of original mesh in any order:

flip

Next, flip new edges that touch a new and old vertex:

Stanford CS248, Winter 2019

Continuity of loop subdivision surface
At extraordinary vertices

- Surface is at least C1 continuous

Everywhere else (“ordinary” regions)

- Surface is C2 continuous

Stanford CS248, Winter 2019

Loop subdivision results

Stanford CS248, Winter 2019

Catmull-Clark subdivision

Stanford CS248, Winter 2019

Catmull-Clark subdivision (regular quad mesh)

Stanford CS248, Winter 2019

Catmull-Clark subdivision (regular quad mesh)

Stanford CS248, Winter 2019

Catmull-Clark subdivision (regular quad mesh)

Each subdivision step:
 Add vertex in each face
 Add midpoint on each edge
 Connect all new vertices

Stanford CS248, Winter 2019

Catmull-Clark vertex update rules (quad mesh)

Face point f =
v1 + v2 + v3 + v4

4v1

v2 v3

v4

f

v1

v2

f1 f2
e

e =
v1 + v2 + f1 + f2

4

Edge point

f1 f2

f3 f4

p
v

m1

m2

m3

m4

Vertex point

v =
f1 + f2 + f3 + f4 +2(m1 +m2 +m3 +m4)+4p

16

m midpoint of edge, not “edge point”
p old “vertex point”

Stanford CS248, Winter 2019

Catmull-Clark subdivision (general mesh)

Non-quad face

Extraordinary 
vertex 
(valence != 4)

Each subdivision step:
 Add vertex in each face
 Add midpoint on each edge
 Connect all new vertices

Stanford CS248, Winter 2019

Catmull-Clark subdivision (general mesh)

How many extraordinary  
vertices after first subdivision?
What are their valences?
How many non-quad faces?

Stanford CS248, Winter 2019

Catmull-Clark subdivision (general mesh)

Stanford CS248, Winter 2019

Catmull-Clark subdivision (general mesh)

Stanford CS248, Winter 2019

Catmull-Clark vertex update rules (general mesh)

f = average of surrounding vertices

e =
f1 + f2 + v1 + v2

4
These rules reduce to earlier quad
rules for ordinary vertices / faces

v =
f̄
n

+
2m̄
n

+
p(n�3)

n

f̄ = average of adjacent face points
m̄ = average of adjacent midpoints

n = valence of vertex
p = old ”vertex” point

Stanford CS248, Winter 2019

Continuity of Catmull-Clark surface
At extraordinary points

- Surface is at least C1 continuous

Everywhere else (“ordinary” regions)

- Surface is C2 continuous

Stanford CS248, Winter 2019

What about sharp creases?

From Pixar Short, “Geri’s Game”
Hand is modeled as a Catmull Clark surface with creases between skin and fingernail

Stanford CS248, Winter 2019

What about sharp creases?

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

Stanford CS248, Winter 2019

Creases and boundaries
Can create creases in subdivision surfaces by marking certain
edges as “sharp”. Surface boundary edges can be handled the
same way

- Use different subdivision rules for vertices along these
“sharp” edges

1

2

1

2

1

8

1

8
3

4

Insert new midpoint vertex,  
weights as shown

Update existing vertices,  
weights as shown

Stanford CS248, Winter 2019

Subdivision in action (“Geri’s Game”, Pixar)

Subdivision used for entire character:

- Hands and head

- Clothing, tie, shoes

Stanford CS248, Winter 2019

Mesh simplification — downsampling

Stanford CS248, Winter 2019

How do we resample meshes? (reminder)

Edge split is (local) upsampling:

Edge collapse is (local) downsampling:

Edge flip is (local) resampling:

Still need to intelligently decide which edges to modify!
b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

Stanford CS248, Winter 2019

Mesh simplification
Goal: reduce number of mesh elements while maintaining
overall shape

30,000 triangles 3,000 300 30

Stanford CS248, Winter 2019

Estimate: error introduced by collapsing an edge?
How much geometric error is introduced by collapsing an edge?

collapse

Stanford CS248, Winter 2019

Sketch of Quadric Error  
Mesh Simplification

Stanford CS248, Winter 2019

Simplification via quadric error
Iteratively collapse edges
Which edges? Assign score with quadric error metric*

- Approximate distance to surface as sum of squared
distances to planes containing nearby triangles

- Iteratively collapse edge with smallest score

- Greedy algorithm... great results!

* (Garland & Heckbert 1997)

Stanford CS248, Winter 2019

Review: point-to-plane distance

Signed distance to plane with normal N
passing through point p?
 => N • (x – p)

Stanford CS248, Winter 2019

Quadric error matrix (encodes squared distance)
- Suppose we have:

- a query point (x,y,z)
- a normal (a,b,c)
- an offset d := –(xp,yp,zp) • (a,b,c)

- Then in homogeneous coordinates, let
- u := (x,y,z,1)
- v := (a,b,c,d)

- Signed distance to plane is then  
D = uvT = vuT = ax+by+cz+d

- Squared distance is D2 = (uvT)(vuT) = u (vTv) uT := uTQu

- Distance is 2nd degree (“quadric”) polynomial in x,y,z

Stanford CS248, Winter 2019

Quadric error at mesh vertex
Heuristic: error at vertex V is sum of squared distances to
triangles connected to V

Encode this as a single quadric matrix per vertex that is the sum
of quadric error matrices for all triangles

Q1

Q2Q3

Q4

Q5

QV

QV =
NX

i=1

Qi

Stanford CS248, Winter 2019

Cost of edge collapse
How much does it cost to collapse an edge?
Idea: compute edge midpoint Vmid, measure quadric error at this point
Error at Vmid given by vmidT(Q0 + Q1)vmid

Intuition: cost is sum of squared differences to original position of
triangles now touching Vmid

collapse

Better idea: choose point on edge (not necessarily the midpoint) that
minimizes quadric error

More details: Garland & Heckbert 1997

V0 V1 Vmid = (V0 + V1) / 2

Stanford CS248, Winter 2019

Quadric error simplification: algorithm
- Compute quadric error matrix Q for each triangle’s plane

- Set Q at each vertex to sum of Q’s from neighbor triangles

- Set Q at each edge to sum of Q’s at endpoints

- Find point at each edge minimizing quadric error

- Until we reach target # of triangles:

- collapse edge (i,j) with smallest cost to get new vertex m

- add Qi and Qj to get quadric Qm at vertex m

- update cost of edges touching vertex m

Stanford CS248, Winter 2019

Quadric error mesh simplification

5,804 994 532 248 64

G
arland and H

eckbert ‘97

30,000 triangles 3,000 300 30

Stanford CS248, Winter 2019

Mesh Regularization

Stanford CS248, Winter 2019

What makes a “good” triangle mesh?

“GOOD” “BAD”

*See Shewchuk, “What is a Good Linear Element”

One rule of thumb: triangle shape

More specific condition: Delaunay

- “Circumcircle interiors contain no vertices.”

Not always a good condition, but often*

- Good for simulation

- Not always best for shape approximation

Stanford CS248, Winter 2019

subdivide

What else constitutes a good mesh?
Rule of thumb: regular vertex degree
Triangle meshes: ideal is every vertex with valence 6:

Why? Better triangle shape, important for (e.g.) subdivision:

“GOOD” “OK” “BAD”

*See Shewchuk, “What is a Good Linear Element”

Stanford CS248, Winter 2019

Isotropic remeshing

Goal: try to make triangles uniform in shape and size

Stanford CS248, Winter 2019

How do we make a mesh “more delaunay”?
Already have a good tool: edge flips!

If α+β > π, flip it!

In practice: a simple, effective way to improve mesh quality

Stanford CS248, Winter 2019

How do we improve degree?
Edge flips!
If total deviation from degree 6 gets smaller, flip it!

flip

Iterative edge flipping acts like “discrete diffusion” of degree

No (known) guarantees; works well in practice

Stanford CS248, Winter 2019

How do we make triangles “more round”?
Delaunay doesn’t mean equilateral triangles
Can often improve shape by centering vertices:

average

[See Crane, “Digital Geometry Processing with Discrete Exterior Calculus”]

Stanford CS248, Winter 2019

Isotropic remeshing algorithm*
Repeat four steps:
- Split edges over 4/3rds mean edge length
- Collapse edges less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

* Based on Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”

Stanford CS248, Winter 2019

Things to remember
Triangle mesh representations

- Triangles vs points+triangles

- Half-edge structure for mesh traversal and editing

Geometry processing basics

- Local operations: flip, split, and collapse edges

- Upsampling by subdivision (Loop, Catmull-Clark)

- Downsampling by simplification (Quadric error)

- Regularization by isotropic remeshing

Stanford CS248, Winter 2019

Acknowledgements
Thanks to Keenan Crane, Ren Ng, Pat Hanrahan, James
O’Brien, Steve Marschner for presentation resources

