
Interactive Computer Graphics 
Stanford CS248, Winter 2019

Introduction to Geometry

Lecture 6:
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Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations
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What is geometry?

ge•om•et•ry   /jēˈämətrē/ n. 
1. The study of shapes, sizes, patterns, and positions. 
2. The study of spaces where some quantity (lengths, 
    angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”
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Examples of geometry

Photo of original Utah teapot 
(now sitting in Computer History 

Museum in Mountain View)

Martin Newell’s early teapot renderings 
(Martin created teapot model in 1975 using 
Bezier curves)
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Examples of geometry

Cornell Box: Originally created in 1984 
(This image was rendered in 1985 by Cohen and Greenberg)
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Examples of geometry

The Stanford Bunny 
(Mesh created by reconstruction from laser scans)

Photograph of scanned statue 
(Statue purchased by Greg Turk at 
a store on University Ave in 1994)
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Examples of geometry
Laser scan of Michelangelo’s David 
(created as part of Stanford’s 
Digital Michelangelo project in 
1999)
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Examples of geometry

Curly hair in Pixar’s “Brave” (2012)
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What’s the best way to encode geometry 
on a computer?



Stanford CS248, Winter 2019

No one “best” choice—geometry is hard!

“I hate meshes. 
  I cannot believe how hard this is. 
  Geometry is hard.”

—David Baraff 
Senior Research Scientist 
Pixar Animation Studios

Slide cribbed from Keenan Crane, Slide cribbed from Jeff Erickson.
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Many ways to digitally encode geometry
EXPLICIT 
- point cloud 
- polygon mesh 
- subdivision, NURBS 
- ... 
IMPLICIT 
- level set 
- algebraic surface 
- L-systems 
- ... 
Each choice best suited to a different task/type of geometry
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“Implicit” representations of geometry
Points aren’t known directly, but satisfy some relationship 
E.g., unit sphere is all points such that x2+y2+z2=1 
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0
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Many implicit representations in graphics
algebraic surfaces 
constructive solid geometry 
level set methods 
blobby surfaces 
fractals 
...

(Will see some of these a bit later.)  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But first, let’s play a game: 

I’m thinking of an implicit surface 
f(x,y,z)=0  

Find any point on it.
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Give up?

y

xz

( 1.5, 0, 0 )

My function was f(x,y,z) = x - 1.5 (a plane):

Implicit surfaces make some tasks hard (like sampling).
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Let’s play another game. 

I have a new surface f(x,y,z) = x2 + y2 + z2 - 1 

I want to see if a point is inside it.
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Check if this point is inside the unit sphere

xz

y

Implicit surfaces make other tasks easy (like inside/outside tests).

9/16 + 4/16 + 1/16  =  7/8

7/8 < 1

YES.

How about the point ( 3/4, 1/2, 1/4 )?

( 3/4, 1/2, 1/4 )
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Recall: implicit form of a line
Easy to test if a point is on the “positive” or negative side of the line

P0

P1

N

P

V

L(x, y) = V ·N = Ax+By + C

L(x, y) > 0

L(x, y) = 0 (for points on the line)

(for points on the shaded side of the line)



Stanford CS248, Winter 2019

“Explicit” representations of geometry
All points are given directly 
E.g., points on sphere are 

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)
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“Explicit” representations of geometry
More generally: 
Example: a triangle
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Many explicit representations in graphics
triangle meshes 
polygon meshes 
subdivision surfaces 
NURBS 
point clouds 
...

(Will see some of these a bit later.)  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But first, let’s play a game: 

I’ll give you an explicit surface. 

You give me some points on it.
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Sampling an explicit surface

y

xz

My surface is f( u, v ) = ( 1.5, u, v ).

Explicit surfaces make some tasks easy (like sampling).

Just plug in any values (u,v)!
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Let’s play another game. 

I have a new surface f(u,v). 

I want to see if a point is inside it.
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Check if this point is inside the torus

xz

y

Explicit surfaces make other tasks hard (like inside/outside tests).

My surface is f(u,v) = ( 2+cos(u))cos(v), 2+cos(u))sin(v), sin(u) )

...NO!

( 1, √3, 5/4 )

How about the point (1,√3,5/4)?
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CONCLUSION: 
Some representations work better than 

others—depends on the task!
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Different representations will be better 
suited to different types of geometry. 

Let’s take a look at some common 
representations used in computer graphics.
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Algebraic surfaces (implicit)
Surface is zero set of a polynomial in x, y, z (“algebraic variety”) 
Examples: 

What about more complicated shapes? 

Very hard to come up with polynomials for complex shapes!
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Constructive solid geometry (implicit)
Build more complicated shapes via Boolean operations 
Basic operations:

UNION

INTERSECTION

DIFFERENCE

Then build more 
complex expressions:
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Blobby surfaces (implicit)
Instead of booleans, gradually blend surfaces together: 

Easier to understand in 2D:
(Gaussian centered at p)

(Sum of Gaussians centered at different points)

�p(x) := e�|x�p|2

f = 0.5 f = 0.4 f = 0.3
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Blending distance functions (implicit)
A distance function gives distance to closest point on object 
Can blend any two distance functions d1, d2: 

Similar strategy to points, though many possibilities.  E.g., 

Appearance depends on exactly how we combine functions 
Q: How do we implement a simple Boolean union?
A: Just take the minimum:

f(x) := e�d1(x)
2

+ e�d2(x)
2

� 1

2
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Scene of pure distance functions (not easy!)
TODO: Iñigo Quilez example; link

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm
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Level set methods (implicit)
Implicit surfaces have some nice features (e.g., merging/splitting) 
But, hard to describe complex shapes in closed form 
Alternative: store a grid of values approximating function
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Surface is found where interpolated values equal zero 
Provides much more explicit control over shape (like a texture) 
Often demands sophisticated filtering (trilinear, tricubic…)
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Level sets from medical data (CT, MRI, etc.)
Level sets encode, e.g., constant tissue density



Stanford CS248, Winter 2019

Level sets in physical simulation
Level set encodes distance to air-liquid boundary

See http://physbam.stanford.edu

http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm
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Level set storage
Drawback: storage for 2D surface is now O(n3) 
Can reduce cost by storing only a narrow band of distances 
around surface:

In this figure: 
red = clearly within water 
blue = clearly outside water

green = regions where we store level set values to encode surface
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Fractals (implicit)
No precise definition; exhibit self-similarity, detail at all scales 
New “language” for describing natural phenomena 
Hard to control shape!
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Mandelbrot set - definition
For each point c in the plane: 
- double the angle 
- square the magnitude 
- add the original point c 
- repeat

If the point remains bounded (never goes to ∞), it’s in the set.



Stanford CS248, Winter 2019

Mandelbrot set - examples

starting point
(converges)

(periodic)

(diverges)
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Mandelbrot set - zooming in
For each point c in the plane: 
- double the angle, square the magnitude 
- add the original point c 
- repeat 
If the point remains bounded (never goes to ∞), it’s in the set 
In complex numbers:

(Colored according to how quickly each point diverges/converges.)
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Iterated function systems

Scott Draves (CMU Alumnus) - see http://electricsheep.org

http://electricsheep.org
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Implicit representations - pros and cons
Pros: 
- Description can be very compact (e.g., a polynomial) 
- Easy to determine if a point is in our shape (just plug it in!) 
- Other queries may also be easy (e.g., distance to surface) 
- For simple shapes, exact description/no sampling error 
- Easy to handle changes in topology (e.g., fluid) 
Cons: 
- Expensive to find all points in the shape (e.g., for drawing) 
- Very difficult to model complex shapes
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What about explicit representations?
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Point cloud (explicit)
Easiest representation: list of points (x,y,z) 
Often augmented with normals 
Easily represent any kind of geometry 
Useful for LARGE datasets (>>1 point/pixel) 
Hard to interpolate undersampled regions 
Hard to do processing / simulation / …



Stanford CS248, Winter 2019

Point cloud via laser scanning

Image Credit: 3Dling
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Another example: Microsoft XBox 360 Kinect

Illuminant 
(Infrared Laser + diffuser)

RGB Sensor 
640x480

Monochrome Infrared 
Sensor 

Image credit: iFixIt
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Structured light

z

zref

d

f

Reference plane

Known light 
source

b

System: one light source emitting known beam + one camera measuring scene appearance  
If the scene is at reference plane, image that will be recorded by camera is known 
(correspondence between pixel in recorded image and scene point is known)

Single spot illuminant is inefficient! 
(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image) 

x
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Infrared image of Kinect illuminant output

Credit: www.futurepicture.org
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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Polygon mesh (explicit)
Store vertices and polygons (most often triangles or quads) 
Easier to do processing/simulation, adaptive sampling 
More complicated data structures 
Perhaps most common representation in graphics

(Much more about polygon meshes in upcoming lectures!)
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Triangle mesh (explicit)
Store vertices as triples of coordinates (x,y,z) 
Store triangles as triples of indices (i,j,k) 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

TRIANGLES

Use linear interpolation to define points inside triangles:

f(u,v) = a + u(b-a) + v(c-a)
u

v f(u,v)

a b

c
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Linear interpolation of samples (in 1D)

f(t) = (1� t)f0 + tf1

f0

f1

x0 x1

t =
x� x0

x1 � x0

x
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Can think of linear interpolation as linear 
combination of two functions

f(t) = (1� t)f0 + tf1

f0

f1

x0 x1x

(1� t)

t

f(t) = (1� t)f0 + tf1

Weights are given by the two values (f0 and f1) being interpolated
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Problem with piecewise linear interpolation: 
derivates not continuous

f0

x0 x1

f1
f2

x2
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Smooth interpolation?
continuous 
first derivative

f0

x0 x1

f1
f2

x2
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Bernstein basis
Why limit ourselves to just linear interpolation? 
More flexibility by using higher-order polynomials 
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree
0≤x≤1

1
2

1

1
2

1
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Bézier curves (explicit)
A Bézier curve is a curve expressed in the Bernstein basis:

control points

For n=1, just get a line segment! 
For n=3, get “cubic Bézier”: 
Important features: 
1. interpolates endpoints 
2. tangent to end segments 
3. contained in convex hull (nice for rasterization)
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Piecewise Bézier curves (explicit)
More interesting shapes: piece together many Bézier curves 
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier
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Vector fonts

Baskerville font - represented as cubic Bézier splines

credit: Randall Branding

The Quick Brown 
Fox Jumps Over 
The Lazy Dog 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 0123456789
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Bézier curves — tangent continuity
To get “seamless” curves, want points and tangents to line up:

Ok, but how? 
Each curve is cubic: u3p0 + 3u2(1-u)p1 + 3u(1-u)2p2 + (1-u)3p3 
Q: How many constraints vs. degrees of freedom? 
Q: Could you do this with quadratic Bézier?  Linear Bézier?
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Tensor product
Can use a pair of curves to get a surface 
Value at any point (u,v) given by product of a curve f at u and 
a curve g at v (sometimes called the “tensor product”):

u

v
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Bézier patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1



Stanford CS248, Winter 2019

Bézier surface
Just as we connected Bézier curves, can connect Bézier patches 
to get a surface:

Very easy to draw: just dice each patch into regular (u,v) grid!
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Notice anything fishy about the last 
picture?
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Bézier patches are too simple
Notice that exactly four patches 
meet around every vertex!

In practice, this is far 
too constrained.

To make interesting 
shapes (with good 
continuity), we need 
patches that allow more 
interesting connectivity...
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Spline patch schemes
There are many alternatives! 
NURBS, Gregory, Pm, polar… 
Tradeoffs: 
- degrees of freedom 
- continuity 
- difficulty of editing 
- cost of evaluation 
- generality 
- … 
As usual: pick the right tool for the job!
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Subdivision (explicit or implicit?)
Alternative starting point for curves/surfaces: subdivision 
Start with control curve 
Insert new vertex at each edge midpoint 
Update vertex positions according to fixed rule 
For careful choice of averaging rule, yields smooth curve 
- Some subdivision schemes correspond to well-known spline 

schemes!

Slide cribbed from Don Fussell.
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Subdivision surfaces (explicit)
Start with coarse polygon mesh (“control cage”) 
Subdivide each element 
Update vertices via local averaging 
Many possible rule: 
- Catmull-Clark (quads) 
- Loop (triangles) 
- ... 
Common issues: 
- interpolating or approximating? 
- continuity at vertices? 
Easier than splines for modeling; harder to evaluate pointwise
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Subdivision in action (Pixar’s “Geri’s Game”)
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Surfaces and manifolds
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Manifold assumption
I’ll now introduce the idea of manifold geometry 
Can be hard to understand motivation at first! 
- Will become more clear next class

u

v
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Smooth surfaces
Intuitively, a surface is the boundary or “shell” of an object 
(Think about the candy shell, not the chocolate.) 
Surfaces are manifold: 
- If you zoom in far enough (at any point) looks like a plane* 
- E.g., the Earth from space vs. from the ground

*…or can easily be flattened into the plane, without cutting or ripping.



u

v
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Why is the manifold property valuable?
Makes life simple: all surfaces look the same (at least locally) 
Gives us coordinates!  (at least locally)
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Isn’t every shape manifold?
No, for instance:

Center point never looks like the plane, no matter how close we get.
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More examples of smooth surfaces
Which of these shapes are manifold?
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A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check: 
1. Every edge is contained in only two polygons (no “fins”) 
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES
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What about boundary?
The boundary is where the surface “ends.” 
E.g., waist and ankles on a pair of pants. 
Locally, looks like a half disk 
Globally, each boundary forms a loop 

Polygon mesh: 
- one polygon per boundary edge 
- boundary vertex looks like “pacman”

YES
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Measurements of surfaces
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Surface tangent
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Surface normal (N) is orthogonal to all tangents
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A common visualization of normals
Encode normal direction as RGB color as difference from gray 

Image credit: https://www.3dgep.com/forward-plus/

R = 0.5 + 0.5 N.x  
G = 0.5 + 0.5 N.y 
B = 0.5 + 0.5 N.z 

Notice: scale and bias normal values so we can represent 
negative components of normal as valid colors
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Curvature is change in normal
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Radius of curvature

curvature
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