
Interactive Computer Graphics 
Stanford CS248, Winter 2019

Lecture 2:

Drawing a Triangle 
(+ the basics of sampling/anti-aliasing)
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CNC sharpie drawing machine   ;-)

http://44rn.com/projects/numerically-controlled-poster-series-with-matt-w-moore/
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Oscilloscope
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Cathode ray tube

[Credit: http://propagation.ece.gatech.edu/ECE3025/tutorials/CathodeRayTube/CRToverview.htm]
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Oscilloscope art

https://www.youtube.com/watch?v=rtR63-ecUNo



Stanford CS248, Winter 2019

Frame buffer: memory for a raster display

image = “2D array of colors”
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Flat panel displays

B.Woods, Android Pit

Low-Res LCD Display

High resolution color LCD, OLED, …
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LCD (liquid crystal display) pixel

▪ Principle: block or transmit  
light by twisting polarization 

▪ Illumination from backlight 
(e.g. fluorescent or LED) 

▪ Intermediate intensity 
levels by partial twist

[Image credit: H&B fig. 2-16]
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LCD screen pixels (closeup)

iphonearena.com iphonearena.com

iPhone 6S Galaxy S5
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LED array display

Light emitting diode array
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DMD projection display
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Array of micro-mirror pixels 

DMD = Digital micro-mirror device
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DMD projection display
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Array of micro-mirror pixels 

DMD = Digital micro-mirror device
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Drawing a triangle to a frame buffer 
(triangle “rasterization”)
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Input: 
projected position of triangle vertices: P0, P1, P2

Today: drawing a triangle to a frame buffer

Output: 
set of pixels “covered” by the triangle

Determining what pixels the triangle overlaps?

P0

P1

P2
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Why triangles? 
Triangles are a basic block for creating 
more complex shapes and surfaces
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▪ Why triangles? 
- Most basic polygon 

- Can break up other polygons into triangles 
- Optimize one implementation 

- Triangles have unique properties 
- Guaranteed to be planar 
- Well-defined interior 
- Well-defined method for interpolating values at vertices 

over triangle (barycentric interpolation)

Triangles - fundamental primitive
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What does it mean for a pixel to be covered by a triangle? 
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4
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One option: compute fraction of pixel area covered by triangle, then 
color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10% 
of pixel, then pixel should be 
10% red.
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Analytical coverage schemes get tricky when 
considering occlusion of one triangle by another

Two regions of triangle 1 contribute to pixel.  
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other 
half covered by triangle 2
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Today we will draw triangles using a 
simple method: point sampling 

(let’s consider sampling in 1D first)
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Consider a 1D signal: f (x)

x

f (x)
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Sampling: taking measurements a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: five measurements (“samples”) of  f(x)
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Audio file: stores samples of a 1D signal

time

Amplitude

Audio is often sampled at 44.1 KHz
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Sampling a function
▪ Evaluating a function at a point is sampling 

▪ We can discretize a function by periodic sampling 

▪ Sampling is a core idea in graphics. In this class we’ll sample  
time (1D), area (2D), angle (2D), volume (3D), etc …

for( int x = 0; x < xmax; x++ )

    output[x] = f(x);



Stanford CS248, Winter 2019

Reconstruction: given a set of samples, how might 
we attempt to reconstruct the original signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)
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Piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x
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Piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x
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How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely 
(increase sampling rate)



Stanford CS248, Winter 2019

Reconstructions from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation
= reconstruction via nearest 
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Drawing a triangle by 2D sampling
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Define binary function: inside(tri,x,y) 

inside(t,x,y) = 
1 

0 

(x,y) in triangle t 

otherwise
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Sampling the binary function: inside(tri,x,y)

Pixel (x,y)

1

2

3

4

Example: 
Here I chose the sample 
position to be at the pixel 
center.

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated 

(x + 0.5, y + 0.5)



Stanford CS248, Winter 2019

Sample coverage at pixel centers
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Sample coverage at pixel centers
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Rasterization = sampling a 2D indicator function

▪ Rasterize triangle tri by sampling the function  
f(x,y) = inside(tri,x,y) 

for( int x = 0; x < xmax; x++ ) 
  for( int y = 0; y < ymax; y++ ) 
    Image[x][y] = f(x + 0.5, y + 0.5);
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Evaluating  inside(tri,x,y)
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Triangle = intersection of three half planes

P0

P1

P2
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Each line defines two half-planes
▪ Implicit line equation 

- L(x,y) = Ax + By + C 

- On line:       L(x,y) = 0 

- Above line: L(x,y) > 0 

- Below line:  L(x,y) < 0

> 0

< 0

= 0



Stanford CS248, Winter 2019

Line equation derivation

P0

P1
T

T = P1 � P0 = (x1 � x0, y1 � y0)

Line Tangent Vector
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(x,y)

(-y,x)

Perp(x, y) = (�y, x)

General Perpendicular  
Vector in 2D

Line equation derivation
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P0

P1
T

N

N = Perp(T ) = (�(y1 � y0), x1 � x0)

Line Normal Vector

Line equation derivation
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P0

P1

N

P = (x, y)

V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Line equation derivation

Now consider a point P.  
Which side of the line is it on?
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P0

P1

N

P = (x, y)

V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Line equation derivation
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Line equation tests

P0

P1

N

P

V

L(x, y) = V ·N > 0
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L(x, y) = V ·N = 0

Line equation tests

P0

P1

N

P
V
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L(x, y) = V ·N < 0

Line equation tests

P0

P1

N

P
V
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Li (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge

L0(x, y) < 0

“inside”

“outside”



Stanford CS248, Winter 2019

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Li (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge

L1(x, y) < 0
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Li (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge

L2(x, y) < 0
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Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the 
triangle if it is inside all three edges. 

inside(sx, sy) =
L0 (sx, sy) < 0 &&
L1 (sx, sy) < 0 &&
L2 (sx, sy) < 0;

Note: actual implementation of 
inside(sx,sy) involves ≤ checks based on 
the triangle coverage edge rules 
(see next slides)

Sample points inside triangle are highlighted red.
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Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2
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OpenGL/Direct3D edge rules
▪ When edge falls directly on a screen sample point, the sample is classified as within 

triangle if the edge is a “top edge” or “left edge” 
- Top edge: horizontal edge that is above all other edges 
- Left edge:  an edge that is not exactly horizontal and is on the left side of the 

triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft
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Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Li (x, y)  = 0  : point on edge
              > 0  : outside edge
              < 0  : inside edge

Finding covered samples: 
incremental triangle traversal

P0

P1

P2

Efficient incremental update: 

dLi (x+1,y) = Li (x,y) + dYi = Li (x,y) + Ai

dLi (x,y+1) = Li (x,y) + dXi = Li (x,y) + Bi

Incremental update saves computation: 
Only one addition per edge, per sample test 

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)
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Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks 

Test all samples in block against triangle in parallel

Advantages: 
- Simplicity of parallel execution overcomes cost 

of extra point-in-triangle tests (most triangles 
cover many samples) 

- Can skip sample testing work: entire block not 
in triangle (“early out”), entire block entirely 
within triangle (“early in”) 

- Additional advantages related to accelerating 
occlusion computations (not discussed today)

All modern graphics processors have special-purpose hardware 
for efficiently performing point-in-triangle tests 
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Recall: pixels on a screen

LCD display 
pixel on my 
laptop

Each image sample sent to the display is 
converted into a little square of light of 
the appropriate color: 
(a pixel = picture element) 

* Thinking of each LCD pixel as emitting a square of uniform 
intensity light of a single color is a bit of an approximation to 
how real displays work, but it will do for now.
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So, if we send the display this sampled signal
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The display physically emits this signal

Given our simplified “square pixel” display assumption, we’ve 
effectively performed a piecewise constant reconstruction
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Compare: the continuous triangle function 
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What’s wrong with this picture? 

Jaggies!
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Jaggies (staircase pattern)

Is this the best we can do?
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Reminder: how can we represent a sampled 
signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely 
(increase sampling rate)
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Point sampling: one sample per pixel
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Supersampling: step 1

2x2 supersampling

Take NxN samples in each pixel

(but… how do we use these samples to drive a display, since there are four times more samples 
than display pixels!)

one 
pixel
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Supersampling: step 2

Averaging down

Average the NxN samples “inside” each pixel
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Supersampling: step 2

Averaging down

Average the NxN samples “inside” each pixel
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Supersampling: step 2

Average the NxN samples “inside” each pixel
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Supersampling: result

This is the corresponding signal emitted by the display

75%

100% 100% 50%

50%50%50%25%
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Point sampling

One sample per pixel
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4x4 supersampling + downsampling

Pixel value is average of 4x4 samples per pixel
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Let’s understand what just 
happened in a more principled way



Stanford CS248, Winter 2019

More examples of sampling 
artifacts in computer graphics



Stanford CS248, Winter 2019

Jaggies (staircase pattern)

Is this the best we can do?
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Moiré patterns in imaging
lystit.com

Read every sensor pixel Skip odd rows and columns
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Wagon wheel illusion (false motion)

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU
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Sampling artifacts in computer graphics
▪ Artifacts due to sampling - “Aliasing” 

- Jaggies – sampling in space 
- Wagon wheel effect – sampling in time 
- Moire – undersampling images (and texture maps) 
- [Many more] … 

▪ We notice this in fast-changing signals, when we sample too 
sparsely



Stanford CS248, Winter 2019

Sines and cosines

cos 2⇡x

sin 2⇡x
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Frequencies 

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T



Stanford CS248, Winter 2019

Representing sound as a superposition of 
frequencies

f1(x) = sin(𝜋x)

f2(x) = sin(2𝜋x)

f4(x) = sin(4𝜋x)

f(x) = 1.0 f1(x) + 0.75 f2(x) + 0.5 f4(x) 
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Audio spectrum analyzer: representing sound 
as a sum of its constituent frequencies

Intensity of 
low-frequencies (bass)

Image credit: ONYX Apps 

Intensity of 
high frequencies
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How to compute frequency-domain 
representation of a signal?
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Fourier transform
Represent a function as a weighted 
sum of sines and cosines

Joseph Fourier 1768 - 1830

f(x) =
A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·
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Fourier transform
▪ Convert representation of signal from spatial/temporal 

domain to frequency domain by projecting signal into its 
component frequencies

▪ 2D form:

F (!) =

Z 1

�1
f(x)e�2⇡ix!dx

=

Z 1

�1
f(x)(cos(2⇡!x)� isin(2⇡!x))dx

F (u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

eix = cosx+ i sinx

Recall:
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Fourier transform decomposes a signal into 
its constituent frequencies

spatial 
domain

frequency 
domain

F (�) =
⇥�

�⇥

f(x)e�i�xdx F (�) =
⇥�

�⇥

f(x)e�i�xdx

Inverse transform

f(x) =

Z 1

�1
F (!)e2⇡i!xd!

Fourier transform

F (!) =

Z 1

�1
f(x)e�2⇡i!xdx
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Visualizing the frequency content of images

SpectrumSpatial domain result
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Constant signal

(0,0)

Frequency domainSpatial domain



Stanford CS248, Winter 2019

                                — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Max signal freq =1/32

(0,0)

Frequency domainSpatial domain
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                              — frequency 1/16; 16 pixels per cyclesin(2⇡/16)x

Max signal freq =1/16

(0,0)

Frequency domainSpatial domain
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sin(2⇡/16)y

Frequency domainSpatial domain
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sin(2⇡/32)x⇥ sin(2⇡/16)y

Frequency domainSpatial domain
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exp(�r2/162)

Frequency domainSpatial domain
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exp(�r2/322)

Frequency domainSpatial domain
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exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain
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Rotate 45 exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain
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Image filtering 
(in the frequency domain)
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Visualizing the frequency content of images

Frequency domainSpatial domain
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Low frequencies only (smooth gradients)

(after low-pass filter) 
All frequencies above cutoff have 0 magnitude

Frequency domainSpatial domain
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Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)
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Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)
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High frequencies (edges)

(strongest edges)
Frequency domainSpatial domain

(after high-pass filter) 
All frequencies below threshold have 0 

magnitude
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An image as a sum of its frequency components

+ + +

=
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Back to our problem of artifacts in images

Jaggies!
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Higher frequencies need denser sampling

x

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f3(x)

f4(x)

f5(x)

Periodic sampling locations

Low-frequency signal: 
sampled adequately for 
reasonable reconstruction

High-frequency signal is 
insufficiently sampled: 
reconstruction incorrectly 
appears to be from a low 
frequency signal
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Undersampling creates frequency “aliases”

High-frequency signal is insufficiently sampled: samples erroneously 
appear to be from a low-frequency signal 

Two frequencies that are indistinguishable at a given sampling rate are 
called “aliases”
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Anti-aliasing idea: filter out high 
frequencies before sampling
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Video: point vs antialiased sampling

Point in time Motion blurred
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Video: point sampling in time
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 30 fps video. 1/800 second exposure is sharp in time, causes time aliasing.

https://youtu.be/NoWwxTktoFs
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Video: motion-blurred sampling
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 30 fps video. 1/30 second exposure is motion-blurred in time, reduces aliasing.

https://youtu.be/NoWwxTktoFs
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Rasterization: point sampling in 2D space

Sample

Note jaggies in rasterized triangle  
(pixel values are either red or white: sample is in or out of triangle)
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Rasterization: anti-aliased sampling

Pre-filter  
(remove frequencies above Nyquist)

Sample

Note anti-aliased edges of rasterized triangle: 
where pixel values take intermediate values 
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Point sampling

One sample per pixel
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Anti-aliasing



Stanford CS248, Winter 2019

Point sampling vs anti-aliasing

Jaggies Pre-filtered
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Anti-aliasing vs blurring an aliased result

Blurred Jaggies Pre-Filtered
(Sample then filter) (Filter then sample)
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How much pre-filtering do we need to 
avoid aliasing?
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Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above ω0

- 1D: consider low-pass filtered audio signal 
- 2D: recall the blurred image example from a few slides ago

ω0-ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / 2ω0  
▪ And reconstruction is performed using a “sinc filter” 

▪ Ideal filter with no frequencies above cutoff (infinite extent!)

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT )

XT (x)f(x) = T
1X

i=�1
f(iT )�(x� iT )

g(x) = XT (x)f(x) = T
1X

i=�1
f(iT )�(x� iT )

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T )/T |x|  T
0 otherwise
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Signal vs Nyquist frequency: example

Max signal freq =1/32

                              — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Spatial domain Frequency domain
No Aliasing!

sampling = every 16 pixels

Nyquist freq. 
= 2 * 1/32 
= 1/16
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Signal vs Nyquist frequency: example
sin(2⇡/16)x

Max signal freq =1/16

                              — frequency 1/16; 16 pixels per cycle

Nyquist freq. 
= 2 * 1/16 
= 1/8

Aliasing! (due to undersampling)

sampling = every 16 pixels
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Reminder: Nyquist theorem

Theorem: We get no aliasing from frequencies in the signal that are 
less than the Nyquist frequency  
(which is defined as half the sampling frequency)

Consequence: sampling at twice the highest frequency in the signal will 
eliminate aliasing
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Challenges of sampling-based approaches in graphics

▪ Our signals are not always band-limited in computer graphics. 
Why?

Hint:

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is 
impractical for efficient implementations. Why?
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Recall our anti-aliasing technique in the first 
half of lecture

Coarsely sampled signalReconstructed signal 
(after averaging over pixel)

Dense sampling of signalOriginal signal 
(high frequency edge)
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Filtering = convolution
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Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1
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Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12Result

1x1 + 3x2 + 5x1 = 12  
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Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16Result

3x1 + 5x2 + 3x1 = 16  
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Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16 18Result

5x1 + 3x2 + 7x1 = 18  
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Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider                         that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “filter weights”, “filter kernel”)
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Box filter (used in a 2D convolution)

1 1 1

1 1 1

1 1 1

Example: 3x3 box filter

1

9
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2D convolution with box filter blurs the image

Original image Blurred 
(convolve with box filter)

Hmm… this reminds me of a low-pass filter…
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Convolution theorem

* =

x =

Spatial  
Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform

Convolution in the spatial domain is equal to multiplication in the 
frequency domain, and vice versa

convolve
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Convolution theorem
▪ Convolution in the spatial domain is equal to multiplication in 

the frequency domain, and vice versa  

▪ Pre-filtering option 1:  
- Filter by convolution in the spatial domain 

▪ Pre-filtering option 2:  
- Transform to frequency domain (Fourier transform) 
- Multiply by Fourier transform of convolution kernel 
- Transform back to spatial domain (inverse Fourier)
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Box function = “low pass” filter

Spatial domain Frequency domain



Stanford CS248, Winter 2019

Wider filter kernel = lower frequencies

Spatial domain Frequency domain
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Wider filter kernel = lower frequencies

▪ As a filter is localized in the spatial domain,  
it spreads out in frequency domain 

▪ Conversely, as a filter is localized in frequency domain, it 
spreads out in the spatial domain
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How can we reduce aliasing error?
▪ Increase sampling rate (increase Nyquist frequency) 

- Higher resolution displays, sensors, framebuffers… 
- But: costly and may need very high resolution to 

sufficiently reduce aliasing 

▪ Anti-aliasing 
- Simple idea: remove (or reduce) signal frequencies above 

the Nyquist frequency before sampling 
- How to filter out high frequencies before sampling?
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Anti-aliasing by averaging values in pixel area

▪ Convince yourself the following are the same:  

▪ Option 1: 
- Convolve f(x,y) by a 1-pixel box-blur 
- Then sample at every pixel  

▪ Option 2: 
- Compute the average value of f(x,y) in the pixel
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Anti-aliasing by computing average pixel value

In rasterizing one triangle, the average value inside a pixel area 
of f(x,y) = inside(tri,x,y) is equal to the area of the pixel covered 
by the triangle. 

Original 

Filtered

1 pixel width
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Putting it all together: 
anti-aliasing via supersampling

Coarse sampling of 
reconstructed signal exhibits 

less aliasing

Reconstructed signal 
(averaging over pixel (via convolution) yields 
new signal with high frequencies removed)

Dense sampling of signal 
(supersampling)Original signal 

(with high frequency edge)
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Today’s summary
▪ Drawing a triangle = sampling triangle/screen coverage 

▪ Pitfall of sampling: aliasing 

▪ Reduce aliasing by prefiltering signal 
- Supersample 
- Reconstruct via convolution (average coverage over pixel)  

- Higher frequencies removed 
- Sample reconstructed signal once per pixel 

▪ There is much, much more to sampling theory and practice…
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