
Interactive Computer Graphics
Stanford CS248, Winter 2019

Lecture 2:

Drawing a Triangle
(+ the basics of sampling/anti-aliasing)

Stanford CS248, Winter 2019

CNC sharpie drawing machine ;-)

http://44rn.com/projects/numerically-controlled-poster-series-with-matt-w-moore/

Stanford CS248, Winter 2019

Oscilloscope

Stanford CS248, Winter 2019

Cathode ray tube

[Credit: http://propagation.ece.gatech.edu/ECE3025/tutorials/CathodeRayTube/CRToverview.htm]

Stanford CS248, Winter 2019

Oscilloscope art

https://www.youtube.com/watch?v=rtR63-ecUNo

Stanford CS248, Winter 2019

Frame buffer: memory for a raster display

image = “2D array of colors”

Stanford CS248, Winter 2019

Flat panel displays

B.Woods, Android Pit

Low-Res LCD Display

High resolution color LCD, OLED, …

Stanford CS248, Winter 2019

LCD (liquid crystal display) pixel

▪ Principle: block or transmit  
light by twisting polarization

▪ Illumination from backlight 
(e.g. fluorescent or LED)

▪ Intermediate intensity 
levels by partial twist

[Image credit: H&B fig. 2-16]

Stanford CS248, Winter 2019

LCD screen pixels (closeup)

iphonearena.com iphonearena.com

iPhone 6S Galaxy S5

Stanford CS248, Winter 2019

LED array display

Light emitting diode array

Stanford CS248, Winter 2019

DMD projection display

[Y
.K

. R
ab

in
ow

itz
; E

K
B

 T
ec

hn
ol

og
ie

s

Array of micro-mirror pixels

DMD = Digital micro-mirror device

Stanford CS248, Winter 2019

DMD projection display

[T
ex

as
 In

st
ru

m
en

ts
]

Array of micro-mirror pixels

DMD = Digital micro-mirror device

Stanford CS248, Winter 2019

Drawing a triangle to a frame buffer
(triangle “rasterization”)

Stanford CS248, Winter 2019

Input:
projected position of triangle vertices: P0, P1, P2

Today: drawing a triangle to a frame buffer

Output:
set of pixels “covered” by the triangle

Determining what pixels the triangle overlaps?

P0

P1

P2

Stanford CS248, Winter 2019

Why triangles?
Triangles are a basic block for creating
more complex shapes and surfaces

Stanford CS248, Winter 2019

▪ Why triangles?
- Most basic polygon

- Can break up other polygons into triangles
- Optimize one implementation

- Triangles have unique properties
- Guaranteed to be planar
- Well-defined interior
- Well-defined method for interpolating values at vertices

over triangle (barycentric interpolation)

Triangles - fundamental primitive

Stanford CS248, Winter 2019

What does it mean for a pixel to be covered by a triangle?
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4

Stanford CS248, Winter 2019

One option: compute fraction of pixel area covered by triangle, then
color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red.

Stanford CS248, Winter 2019

Analytical coverage schemes get tricky when
considering occlusion of one triangle by another

Two regions of triangle 1 contribute to pixel.
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other
half covered by triangle 2

Stanford CS248, Winter 2019

Today we will draw triangles using a
simple method: point sampling

(let’s consider sampling in 1D first)

Stanford CS248, Winter 2019

Consider a 1D signal: f (x)

x

f (x)

Stanford CS248, Winter 2019

Sampling: taking measurements a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: five measurements (“samples”) of f(x)

Stanford CS248, Winter 2019

Audio file: stores samples of a 1D signal

time

Amplitude

Audio is often sampled at 44.1 KHz

Stanford CS248, Winter 2019

Sampling a function
▪ Evaluating a function at a point is sampling

▪ We can discretize a function by periodic sampling

▪ Sampling is a core idea in graphics. In this class we’ll sample  
time (1D), area (2D), angle (2D), volume (3D), etc …

for(int x = 0; x < xmax; x++)

 output[x] = f(x);

Stanford CS248, Winter 2019

Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)

Stanford CS248, Winter 2019

Piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

Stanford CS248, Winter 2019

Piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

Stanford CS248, Winter 2019

How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely
(increase sampling rate)

Stanford CS248, Winter 2019

Reconstructions from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation
= reconstruction via nearest

Stanford CS248, Winter 2019

Drawing a triangle by 2D sampling

Stanford CS248, Winter 2019

Define binary function: inside(tri,x,y)

inside(t,x,y) =
1

0

(x,y) in triangle t

otherwise

Stanford CS248, Winter 2019

Sampling the binary function: inside(tri,x,y)

Pixel (x,y)

1

2

3

4

Example:
Here I chose the sample
position to be at the pixel
center.

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated

(x + 0.5, y + 0.5)

Stanford CS248, Winter 2019

Sample coverage at pixel centers

Stanford CS248, Winter 2019

Sample coverage at pixel centers

Stanford CS248, Winter 2019

Rasterization = sampling a 2D indicator function

▪ Rasterize triangle tri by sampling the function  
f(x,y) = inside(tri,x,y)

for(int x = 0; x < xmax; x++)
 for(int y = 0; y < ymax; y++)
 Image[x][y] = f(x + 0.5, y + 0.5);

Stanford CS248, Winter 2019

Evaluating inside(tri,x,y)

Stanford CS248, Winter 2019

Triangle = intersection of three half planes

P0

P1

P2

Stanford CS248, Winter 2019

Each line defines two half-planes
▪ Implicit line equation

- L(x,y) = Ax + By + C

- On line: L(x,y) = 0

- Above line: L(x,y) > 0

- Below line: L(x,y) < 0

> 0

< 0

= 0

Stanford CS248, Winter 2019

Line equation derivation

P0

P1
T

T = P1 � P0 = (x1 � x0, y1 � y0)

Line Tangent Vector

Stanford CS248, Winter 2019

(x,y)

(-y,x)

Perp(x, y) = (�y, x)

General Perpendicular  
Vector in 2D

Line equation derivation

Stanford CS248, Winter 2019

P0

P1
T

N

N = Perp(T) = (�(y1 � y0), x1 � x0)

Line Normal Vector

Line equation derivation

Stanford CS248, Winter 2019

P0

P1

N

P = (x, y)

V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Line equation derivation

Now consider a point P.
Which side of the line is it on?

Stanford CS248, Winter 2019

P0

P1

N

P = (x, y)

V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Line equation derivation

Stanford CS248, Winter 2019

Line equation tests

P0

P1

N

P

V

L(x, y) = V ·N > 0

Stanford CS248, Winter 2019

L(x, y) = V ·N = 0

Line equation tests

P0

P1

N

P
V

Stanford CS248, Winter 2019

L(x, y) = V ·N < 0

Line equation tests

P0

P1

N

P
V

Stanford CS248, Winter 2019

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

L0(x, y) < 0

“inside”

“outside”

Stanford CS248, Winter 2019

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

L1(x, y) < 0

Stanford CS248, Winter 2019

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

L2(x, y) < 0

Stanford CS248, Winter 2019

Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the
triangle if it is inside all three edges.

inside(sx, sy) =
L0 (sx, sy) < 0 &&
L1 (sx, sy) < 0 &&
L2 (sx, sy) < 0;

Note: actual implementation of
inside(sx,sy) involves ≤ checks based on
the triangle coverage edge rules
(see next slides)

Sample points inside triangle are highlighted red.

Stanford CS248, Winter 2019

Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2

Stanford CS248, Winter 2019

OpenGL/Direct3D edge rules
▪ When edge falls directly on a screen sample point, the sample is classified as within

triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of the

triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft

Stanford CS248, Winter 2019

Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Finding covered samples:
incremental triangle traversal

P0

P1

P2

Efficient incremental update:

dLi (x+1,y) = Li (x,y) + dYi = Li (x,y) + Ai

dLi (x,y+1) = Li (x,y) + dXi = Li (x,y) + Bi

Incremental update saves computation:
Only one addition per edge, per sample test

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)

Stanford CS248, Winter 2019

Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks

Test all samples in block against triangle in parallel

Advantages:
- Simplicity of parallel execution overcomes cost

of extra point-in-triangle tests (most triangles
cover many samples)

- Can skip sample testing work: entire block not
in triangle (“early out”), entire block entirely
within triangle (“early in”)

- Additional advantages related to accelerating
occlusion computations (not discussed today)

All modern graphics processors have special-purpose hardware
for efficiently performing point-in-triangle tests

Stanford CS248, Winter 2019

Recall: pixels on a screen

LCD display
pixel on my
laptop

Each image sample sent to the display is
converted into a little square of light of
the appropriate color:
(a pixel = picture element)

* Thinking of each LCD pixel as emitting a square of uniform
intensity light of a single color is a bit of an approximation to
how real displays work, but it will do for now.

Stanford CS248, Winter 2019

So, if we send the display this sampled signal

Stanford CS248, Winter 2019

The display physically emits this signal

Given our simplified “square pixel” display assumption, we’ve
effectively performed a piecewise constant reconstruction

Stanford CS248, Winter 2019

Compare: the continuous triangle function

Stanford CS248, Winter 2019

What’s wrong with this picture?

Jaggies!

Stanford CS248, Winter 2019

Jaggies (staircase pattern)

Is this the best we can do?

Stanford CS248, Winter 2019

Reminder: how can we represent a sampled
signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely
(increase sampling rate)

Stanford CS248, Winter 2019

Point sampling: one sample per pixel

Stanford CS248, Winter 2019

Supersampling: step 1

2x2 supersampling

Take NxN samples in each pixel

(but… how do we use these samples to drive a display, since there are four times more samples
than display pixels!)

one
pixel

Stanford CS248, Winter 2019

Supersampling: step 2

Averaging down

Average the NxN samples “inside” each pixel

Stanford CS248, Winter 2019

Supersampling: step 2

Averaging down

Average the NxN samples “inside” each pixel

Stanford CS248, Winter 2019

Supersampling: step 2

Average the NxN samples “inside” each pixel

Stanford CS248, Winter 2019

Supersampling: result

This is the corresponding signal emitted by the display

75%

100% 100% 50%

50%50%50%25%

Stanford CS248, Winter 2019

Point sampling

One sample per pixel

Stanford CS248, Winter 2019

4x4 supersampling + downsampling

Pixel value is average of 4x4 samples per pixel

Stanford CS248, Winter 2019

Let’s understand what just
happened in a more principled way

Stanford CS248, Winter 2019

More examples of sampling
artifacts in computer graphics

Stanford CS248, Winter 2019

Jaggies (staircase pattern)

Is this the best we can do?

Stanford CS248, Winter 2019

Moiré patterns in imaging
lystit.com

Read every sensor pixel Skip odd rows and columns

Stanford CS248, Winter 2019

Wagon wheel illusion (false motion)

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU

Stanford CS248, Winter 2019

Sampling artifacts in computer graphics
▪ Artifacts due to sampling - “Aliasing”

- Jaggies – sampling in space
- Wagon wheel effect – sampling in time
- Moire – undersampling images (and texture maps)
- [Many more] …

▪ We notice this in fast-changing signals, when we sample too
sparsely

Stanford CS248, Winter 2019

Sines and cosines

cos 2⇡x

sin 2⇡x

Stanford CS248, Winter 2019

Frequencies

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T

Stanford CS248, Winter 2019

Representing sound as a superposition of
frequencies

f1(x) = sin(𝜋x)

f2(x) = sin(2𝜋x)

f4(x) = sin(4𝜋x)

f(x) = 1.0 f1(x) + 0.75 f2(x) + 0.5 f4(x)

Stanford CS248, Winter 2019

Audio spectrum analyzer: representing sound
as a sum of its constituent frequencies

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

Intensity of
high frequencies

Stanford CS248, Winter 2019

How to compute frequency-domain
representation of a signal?

Stanford CS248, Winter 2019

Fourier transform
Represent a function as a weighted
sum of sines and cosines

Joseph Fourier 1768 - 1830

f(x) =
A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·

Stanford CS248, Winter 2019

Fourier transform
▪ Convert representation of signal from spatial/temporal

domain to frequency domain by projecting signal into its
component frequencies

▪ 2D form:

F (!) =

Z 1

�1
f(x)e�2⇡ix!dx

=

Z 1

�1
f(x)(cos(2⇡!x)� isin(2⇡!x))dx

F (u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

eix = cosx+ i sinx

Recall:

Stanford CS248, Winter 2019

Fourier transform decomposes a signal into
its constituent frequencies

spatial
domain

frequency
domain

F (�) =
⇥�

�⇥

f(x)e�i�xdx F (�) =
⇥�

�⇥

f(x)e�i�xdx

Inverse transform

f(x) =

Z 1

�1
F (!)e2⇡i!xd!

Fourier transform

F (!) =

Z 1

�1
f(x)e�2⇡i!xdx

Stanford CS248, Winter 2019

Visualizing the frequency content of images

SpectrumSpatial domain result

Stanford CS248, Winter 2019

Constant signal

(0,0)

Frequency domainSpatial domain

Stanford CS248, Winter 2019

 — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Max signal freq =1/32

(0,0)

Frequency domainSpatial domain

Stanford CS248, Winter 2019

 — frequency 1/16; 16 pixels per cyclesin(2⇡/16)x

Max signal freq =1/16

(0,0)

Frequency domainSpatial domain

Stanford CS248, Winter 2019

sin(2⇡/16)y

Frequency domainSpatial domain

Stanford CS248, Winter 2019

sin(2⇡/32)x⇥ sin(2⇡/16)y

Frequency domainSpatial domain

Stanford CS248, Winter 2019

exp(�r2/162)

Frequency domainSpatial domain

Stanford CS248, Winter 2019

exp(�r2/322)

Frequency domainSpatial domain

Stanford CS248, Winter 2019

exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain

Stanford CS248, Winter 2019

Rotate 45 exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain

Stanford CS248, Winter 2019

Image filtering
(in the frequency domain)

Stanford CS248, Winter 2019

Visualizing the frequency content of images

Frequency domainSpatial domain

Stanford CS248, Winter 2019

Low frequencies only (smooth gradients)

(after low-pass filter)
All frequencies above cutoff have 0 magnitude

Frequency domainSpatial domain

Stanford CS248, Winter 2019

Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)

Stanford CS248, Winter 2019

Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)

Stanford CS248, Winter 2019

High frequencies (edges)

(strongest edges)
Frequency domainSpatial domain

(after high-pass filter)
All frequencies below threshold have 0

magnitude

Stanford CS248, Winter 2019

An image as a sum of its frequency components

+ + +

=

Stanford CS248, Winter 2019

Back to our problem of artifacts in images

Jaggies!

Stanford CS248, Winter 2019

Higher frequencies need denser sampling

x

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f3(x)

f4(x)

f5(x)

Periodic sampling locations

Low-frequency signal:
sampled adequately for
reasonable reconstruction

High-frequency signal is
insufficiently sampled:
reconstruction incorrectly
appears to be from a low
frequency signal

Stanford CS248, Winter 2019

Undersampling creates frequency “aliases”

High-frequency signal is insufficiently sampled: samples erroneously
appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are
called “aliases”

Stanford CS248, Winter 2019

Anti-aliasing idea: filter out high
frequencies before sampling

Stanford CS248, Winter 2019

Video: point vs antialiased sampling

Point in time Motion blurred

Stanford CS248, Winter 2019

Video: point sampling in time

Cr
ed

it:
 A

ris
 &

 c
am

s
yo

ut
ub

e,
 h

tt
ps

://
yo

ut
u.

be
/N

oW
w

xT
kt

oF
s

 30 fps video. 1/800 second exposure is sharp in time, causes time aliasing.

https://youtu.be/NoWwxTktoFs

Stanford CS248, Winter 2019

Video: motion-blurred sampling

Cr
ed

it:
 A

ris
 &

 c
am

s
yo

ut
ub

e,
 h

tt
ps

://
yo

ut
u.

be
/N

oW
w

xT
kt

oF
s

 30 fps video. 1/30 second exposure is motion-blurred in time, reduces aliasing.

https://youtu.be/NoWwxTktoFs

Stanford CS248, Winter 2019

Rasterization: point sampling in 2D space

Sample

Note jaggies in rasterized triangle  
(pixel values are either red or white: sample is in or out of triangle)

Stanford CS248, Winter 2019

Rasterization: anti-aliased sampling

Pre-filter  
(remove frequencies above Nyquist)

Sample

Note anti-aliased edges of rasterized triangle: 
where pixel values take intermediate values

Stanford CS248, Winter 2019

Point sampling

One sample per pixel

Stanford CS248, Winter 2019

Anti-aliasing

Stanford CS248, Winter 2019

Point sampling vs anti-aliasing

Jaggies Pre-filtered

Stanford CS248, Winter 2019

Anti-aliasing vs blurring an aliased result

Blurred Jaggies Pre-Filtered
(Sample then filter) (Filter then sample)

Stanford CS248, Winter 2019

How much pre-filtering do we need to
avoid aliasing?

Stanford CS248, Winter 2019

Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above ω0

- 1D: consider low-pass filtered audio signal
- 2D: recall the blurred image example from a few slides ago

ω0-ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / 2ω0
▪ And reconstruction is performed using a “sinc filter”

▪ Ideal filter with no frequencies above cutoff (infinite extent!)

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T)/T |x|  T
0 otherwise

Stanford CS248, Winter 2019

Signal vs Nyquist frequency: example

Max signal freq =1/32

 — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Spatial domain Frequency domain
No Aliasing!

sampling = every 16 pixels

Nyquist freq. 
= 2 * 1/32
= 1/16

Stanford CS248, Winter 2019

Signal vs Nyquist frequency: example
sin(2⇡/16)x

Max signal freq =1/16

 — frequency 1/16; 16 pixels per cycle

Nyquist freq. 
= 2 * 1/16
= 1/8

Aliasing! (due to undersampling)

sampling = every 16 pixels

Stanford CS248, Winter 2019

Reminder: Nyquist theorem

Theorem: We get no aliasing from frequencies in the signal that are
less than the Nyquist frequency  
(which is defined as half the sampling frequency)

Consequence: sampling at twice the highest frequency in the signal will
eliminate aliasing

Stanford CS248, Winter 2019

Challenges of sampling-based approaches in graphics

▪ Our signals are not always band-limited in computer graphics.
Why?

Hint:

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is
impractical for efficient implementations. Why?

Stanford CS248, Winter 2019

Recall our anti-aliasing technique in the first
half of lecture

Coarsely sampled signalReconstructed signal
(after averaging over pixel)

Dense sampling of signalOriginal signal
(high frequency edge)

Stanford CS248, Winter 2019

Filtering = convolution

Stanford CS248, Winter 2019

Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

Stanford CS248, Winter 2019

Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12Result

1x1 + 3x2 + 5x1 = 12

Stanford CS248, Winter 2019

Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16Result

3x1 + 5x2 + 3x1 = 16

Stanford CS248, Winter 2019

Convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16 18Result

5x1 + 3x2 + 7x1 = 18

Stanford CS248, Winter 2019

Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “filter weights”, “filter kernel”)

Stanford CS248, Winter 2019

Box filter (used in a 2D convolution)

1 1 1

1 1 1

1 1 1

Example: 3x3 box filter

1

9

Stanford CS248, Winter 2019

2D convolution with box filter blurs the image

Original image Blurred
(convolve with box filter)

Hmm… this reminds me of a low-pass filter…

Stanford CS248, Winter 2019

Convolution theorem

* =

x =

Spatial  
Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform

Convolution in the spatial domain is equal to multiplication in the
frequency domain, and vice versa

convolve

Stanford CS248, Winter 2019

Convolution theorem
▪ Convolution in the spatial domain is equal to multiplication in

the frequency domain, and vice versa  

▪ Pre-filtering option 1:
- Filter by convolution in the spatial domain

▪ Pre-filtering option 2:
- Transform to frequency domain (Fourier transform)
- Multiply by Fourier transform of convolution kernel
- Transform back to spatial domain (inverse Fourier)

Stanford CS248, Winter 2019

Box function = “low pass” filter

Spatial domain Frequency domain

Stanford CS248, Winter 2019

Wider filter kernel = lower frequencies

Spatial domain Frequency domain

Stanford CS248, Winter 2019

Wider filter kernel = lower frequencies

▪ As a filter is localized in the spatial domain,  
it spreads out in frequency domain

▪ Conversely, as a filter is localized in frequency domain, it
spreads out in the spatial domain

Stanford CS248, Winter 2019

How can we reduce aliasing error?
▪ Increase sampling rate (increase Nyquist frequency)

- Higher resolution displays, sensors, framebuffers…
- But: costly and may need very high resolution to

sufficiently reduce aliasing

▪ Anti-aliasing
- Simple idea: remove (or reduce) signal frequencies above

the Nyquist frequency before sampling
- How to filter out high frequencies before sampling?

Stanford CS248, Winter 2019

Anti-aliasing by averaging values in pixel area

▪ Convince yourself the following are the same:  

▪ Option 1:
- Convolve f(x,y) by a 1-pixel box-blur
- Then sample at every pixel

▪ Option 2:
- Compute the average value of f(x,y) in the pixel

Stanford CS248, Winter 2019

Anti-aliasing by computing average pixel value

In rasterizing one triangle, the average value inside a pixel area
of f(x,y) = inside(tri,x,y) is equal to the area of the pixel covered
by the triangle.

Original

Filtered

1 pixel width

Stanford CS248, Winter 2019

Putting it all together:
anti-aliasing via supersampling

Coarse sampling of
reconstructed signal exhibits

less aliasing

Reconstructed signal
(averaging over pixel (via convolution) yields
new signal with high frequencies removed)

Dense sampling of signal
(supersampling)Original signal

(with high frequency edge)

Stanford CS248, Winter 2019

Today’s summary
▪ Drawing a triangle = sampling triangle/screen coverage

▪ Pitfall of sampling: aliasing

▪ Reduce aliasing by prefiltering signal
- Supersample
- Reconstruct via convolution (average coverage over pixel)

- Higher frequencies removed
- Sample reconstructed signal once per pixel

▪ There is much, much more to sampling theory and practice…

Stanford CS248, Winter 2019

Acknowledgements
▪ Thanks to Ren Ng, Pat Hanrahan, Keenan Crane for slide

materials

