Lecture 1:

Course Introduction: Welcome to Computer Graphics!

Interactive Computer Graphics Stanford CS248, Winter 2019

Kayvon Fatahalian

Colin Dolese

Sun

Nikki Nikolenko

Katherine

Elbert Lin

Discussion: Why study computer graphics?

What is computer graphics?

com • put • er graph • ics /kəm 'pyoodər 'grafiks/ *n*. The use of computers to synthesize and manipulate visual information.

Humans are visual creatures!

Why visual information?

About 30% of brain dedicated to visual processing...

...eyes are highest-bandwidth port into the head!

Movies

Jurassic Park (1993)

Movies

The Matrix (1999)

This image is rendered in real-time on a modern GPU

Assassin's Creed Origins (Ubisoft 2017)

Supercomputing for games

Tesla generation NV chip ~ **ASCI Red Supercomputer**

Virtual reality experiences

Augmented reality

Microsoft Hololens augmented reality headset concept

Illustration

Indonesian cave painting (~38,000 BCE)

Digital illustration

Graphical user interfaces

Ivan Sutherland, "Sketchpad" (1963)

Doug Engelbart Mouse

Modern graphical user interfaces

20 drawing and animation are ubiquitous in computing. Typography, icons, images, transitions, transparency, ... (all rendered at high frame rate for rich experience)

Digital photography

NASA | Walter looss | Steve McCurry Harold Edgerton | NASA | National Geographic

Ubiquitous imaging

Cameras everywhere

Imaging in mapping

Maps, satellite imagery, street-level imaging,...

Computational cameras

Panaromic stitching, HDR photos, light field cameras, ...

Computer aided design

SolidWorks

For mechanical, architectural, electronic, optical, ...

SketchUp

Product design and visualization

Ikea - 75% of catalog is rendered imagery

Architectural design

Bilbao Guggenheim, Frank Gehry

Visualization

Science, engineering, medicine, journalism, ...

Simulation

Driving simulator Toyota Higashifuji Technical Center

Flight simulator, driving simulator, surgical simulator, ...

da Vinci surgical robot Intuitive Surgical

Visual technology: 3D fabrication

Computer graphics is everywhere!

Foundations of computer graphics All these applications demand *sophisticated* theory and systems

- **Science and mathematics**
 - Physics of light, color, optics
 - Math of curves, surfaces, geometry, perspective, ...
 - Sampling
- **Systems**
 - parallel, heterogeneous processing
 - input/output devices
 - graphics-specific programming systems
- Art and psychology
 - Perception: color, stereo, motion, image quality, ...
 - Art and design: composition, form, lighting, ...

ACTIVITY: modeling and drawing a cube Goal: generate a realistic drawing of a cube

- Goal: generate a realistic drawing of a content
 Key questions:
 - *Modeling:* how do we describe the cube?
 - Rendering: how do we then visualize this model?

oe? this model?

ACTIVITY: modeling the cube

- Suppose our cube is...
 - centered at the origin (0,0,0)
 - has dimensions 2 x 2 x 2
- QUESTION: What are the coordinates of the cube vertices?

A:	(1,	1,	1)	E :	(1
B:	(-	-1,	1,	1)	F :	(–	-1
C:	(1,-	-1,	1)	G:	(1
D:	(-	-1,-	-1,	1)	H :	(–	-1

- **QUESTION: What about the edges?**
 - AB, CD, EF, GH,
 - AC, BD, EG, FH,
 - AE, CG, BF, DH

, 1, -1) , 1,-1) , -1, -1) , -1, -1)

ACTIVITY: drawing the cube

Now have a digital description of the cube:

VERTICES

A:	(1,	1,	1)	E :	(1,	1,-1)
B:	(-1,	1,	1)	F :	(-	-1,	1,-1)
C :	(1,	-1,	1)	G :	(1,-	-1,-1)
D:	(-1,	-1,	1)	H :	(-	-1,-	-1,-1)

- How do we draw this 3D cube as a 2D (flat) image? **Basic strategy:**
 - 1. Project 3D vertices to 2D points in the image
 - 2. Connect 2D points with straight lines
 - ...Ok, but how?

EDGES

AB,	CD,	EF,	GH,
AC,	BD,	EG,	FH,
AE,	CG,	BF,	DH

Perspective projection

- **Objects look smaller as they get further away ("perspective")**
- Why does this happen?
- **Consider simple ("pinhole") model of a camera:**

Perspective projection: side view

- Where exactly does a point p = (x,y,z) end up on the image?
- Let's call the image point q=(u,v)

Jiew Indupon the image?

Perspective projection: side view Where exactly does a point p = (x,y,z) end up on the image?

- Let's call the image point q=(u,v)
- **Notice two similar triangles:**

- Assume camera has unit size, coordinates relative to pinhole c
- Then v/1 = y/z, i.e., vertical coordinate is just the slope y/z
- Likewise, horizontal coordinate is u=x/z

3D object

ACTIVITY: now draw image made by pinhole camera

Need 12 volunteers

- each person will draw one cube edge
- assume camera is at point c=(2,3,5)
- convert (X,Y,Z) of both endpoints to (u,v):
 - 1. subtract camera c from vertex (X,Y,Z) to get (x,y,z)
 - 2. divide x and y by z to get (u,v)—write as a fraction
- draw line between (u1,v1) and (u2,v2)

VERTICES

A:
$$(1, 1, 1, 1)$$
E: $(1, 1, -1)$ B: $(-1, 1, 1)$ F: $(-1, 1, -1)$ C: $(1, -1, 1)$ G: $(1, -1, -1)$ D: $(-1, -1, 1)$ H: $(-1, -1, -1)$

): Z) to get (x,y,z) ite as a fraction

EDGES

AB, CD, EF, GH, AC, BD, EG, FH, AE, CG, BF, DH

ACTIVITY: how did we do? *

2D coordinates:

- A: (1/4, 1/2)B: (3/4, 1/2)
- C: (1/4, 1) D: (3/4, 1)
- E: (1/6, 1/3)
- F: (1/2, 1/3)
- G: (1/6, 2/3) H: (1/2, 2/3)

* keep in mind, this image is mirrored since it is a pinhole projection. Mirror the result and you get...

But wait... How do we draw lines on a computer?

Output for a raster display

Common abstraction of a raster display:

- Image represented as a 2D grid of "pixels" (picture elements)
- Each pixel can can take on a unique color value

** Kayvon will strongly challenge this notion of a pixel "as a little square" next class. But let's go with it for now. ;-)

**

Close up photo of pixels on a modern display

What pixels should we color in to depict a line? "Rasterization": process of converting a continuous object to a discrete

"Rasterization": process of converting a continuous representation on a raster grid (pixel grid)

What pixels should we color in to depict a line? Light up all pixels intersected by the line?

What pixels should we color in to depict a line? **Diamond rule (used by modern GPUs):**

light up pixel if line passes through associated diamond

What pixels should we color in to depict a line?

Is there a right answer? (consider a drawing a "line" with thickness)

How do we find the pixels satisfying a chosen rasterization rule?

- Could check every single pixel in the image to see if it meets the condition...
 - O(n²) pixels in image vs. at most O(n) "lit up" pixels
 - *must* be able to do better! (e.g., seek algorithm that does work proportional to number of pixels in the drawing of the line)

Incremental line rasterization

- Let's say a line is represented with integer endpoints: (u1,v1), (u2,v2)
- Slope of line: s = (v2-v1)/(u2-u1)
- **Consider an easy special case:**

Common optimization: rewrite algorithm to use only integer arithmetic (Bresenham algorithm)

Line drawing of cube

2D coordinates:

A: (1/4, 1/2)B: (3/4, 1/2)C: (1/4, 1)D: (3/4, 1)E: (1/6, 1/3)F: (1/2, 1/3)G: (1/6, 2/3)H: (1/2, 2/3)

* keep in mind, this image is mirrored since we simulated the result of pinhole projection

We just rendered a simple line drawing of a cube.

But to render more realistic pictures (or animations) we need a much richer model of the world.

surfaces motion materials lights cameras

2D shapes

[Source: Batra 2015]

Complex 3D surfaces

Platonic noid

Realistic lighting environments

Animation: modeling motion

https://www.youtube.com/watch?v=6G3060o5U7w

Physically-based simulation of motion

https://www.youtube.com/watch?v=tT81VPk_ukU

[James 2004]

Course Logistics

About this course

A broad overview of major topics and techniques in interactive computer graphics: geometry, rendering, animation, imaging

- Learn by implementing:
 - Focus on implementing fundamental data structures and algorithms that are reused across all areas of graphics

Getting started

- Sign up for an account on the course web site
 - http://graphics.stanford.edu/courses/cs248-19-winter

Sign up for the course on Piazza

- http://piazza.com/stanford/winter2019/cs248

There is no textbook for this course, but please see the course website for references (there are some excellent graphics textbooks)

Course programming assignments

1.2D drawing (2 weeks)

3. Materials and lighting in a 3D renderer (2 weeks)

Man Designed by Alekksall / Freepik. Woman designed by Dooder / Freepik

2. Geometry editing (2 weeks)

4. Self-selected project extend existing project, take on optional animation project, choose your own (4 weeks)

Assignments / Grading

(45%) Three programming assignments

- Each worth 15% of grade
- In teams of up to two
- (25%) Self-selected final project
 - Extend an earlier assignment, or do your own thing!
- (25%) Midterm / final
 - Both cover cumulative material seen so far
- (5%) Class participation
 - In-class/website comments, other contributions to class

The course web site

We have no textbook for this class and so the lecture slides and instructor/TA/ student discussions on the web are the primary course reference

kayvonf about an hour ago

Thought question for next time: What does it mean for a pixel to be covered by a triangle?

Question: which triangles "cover" this pixel?

See you next time!

Next time, we'll talk about drawing a triangle

- And it's a lot more interesting than it might seem...
- Also, what's up with these "jagged" lines?

Slide acknowledgements: Thanks to Keenan Crane and Ren Ng

ngle might seem... nes?